Power System Seminar Presentation
Wind Forecasting and Dispatch
7th July, 2011

Wind Power Forecasting tools and methodologies

Amanda Kelly
Principal Engineer
Power System Operational Planning
Operations
EirGrid
Contents

• The Eirgrid Journey

• Present System and Applications

• Service received from suppliers

• Supplier Forecast Modelling

• Future / Research
Contents

• The Eirgrid Journey

• Present System and Applications

• Service received from suppliers

• Supplier Forecast Modelling

• Future / Research
The EirGrid Journey

2000 Pilot project Danish university and UCC research project
2001 Developed first Irish system Model operates in Denmark
2002 UK research project, developed first forecast tool for NCC
2006 Tool upgrade GPW + research product
2010 Tool upgrade, Tender with SONI
The EirGrid Journey – during 2010

Transfer of expertise from EirGrid to Service provider core competencies in weather prediction modelling and wind power forecasting

Reasons:
• Development with range of commercial tools now available
• Expertise in Wind Power Forecasting

EirGrid focus
• Performance Incentive Scheme on Forecast accuracy (% total contract price)
Contents

• The Eirgrid Journey

• Present System and Applications

• Service received from suppliers

• Supplier Forecast Modelling

• Future / Research
Present System and Applications

Vendor 1

Vendor 2

WEF

Different requirements

National Control Centre

Single Electricity Market

Wind Level Security Assessment Tool

EirGrid Internet wind graph iPhone App

Forecast Analysis

WEF : Wind Energy Forecast
Contents

• The Eirgrid Journey

• Present System and Applications

• Service received from suppliers

• Supplier Forecast Modelling

• Future / Next step
Service received from suppliers –
What do we acquired from our service providers

1. **Long term forecasting**
 - Unit level wind power forecast
 - 15 minutes resolution, 5 days ahead
 - Updates 4 times daily
 - Irish DST correction
 - GUI
 - High speed shutdown
 - Ramp warnings
 - Icing warnings
 - Confidence band
 - Forecast training (metered data)

2. **Short term forecasting**
 - Updates every 15 minutes, 12 hours ahead
 - Real time SCADA correction from EMS

DST: Daylight saving Time
GUI: Graphical user interface
Service received from suppliers –
Our time horizons

Market:
- SEM - 10 am, Day ahead forecast
 - Unit level forecast
 - Ex-Ante run (D-1) at 10am
 - Ex-post “perfect hindsight” settled with metered generation

Operation:
- RCUC run - day ahead from 6am to 2 days ahead 12pm
 - Aggregated total
 - In day
 - Day ahead
- NCC – Anytime (night valley), scheduling day ahead 14 – 48 hours
 - Aggregated total
 - Real time

RCUC: Reserve constrain unit commitment
Contents

• The Eirgrid Journey

• Present System and Applications

• Service received from suppliers

• Supplier Forecast Modelling

• Future / Research
Multi – scheme weather ensemble prediction system.

- Multiple numerical predictions are conducted using slightly different initial conditions that are all plausible given the past and current set of observations, or measurements.

OPTIMAL FORECAST
Supplier Forecast modelling – Underlying Numerical Weather model

<table>
<thead>
<tr>
<th></th>
<th>GFS</th>
<th>HIRLAM</th>
<th>COSMO-EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting time</td>
<td>00, 06, 12, 18 UTC</td>
<td>00, 06, 12, 18 UTC</td>
<td>00, 06, 12, 18 UTC</td>
</tr>
<tr>
<td>Published at</td>
<td>04:40, 10:40, 16:40 & 22:40 UTC</td>
<td>03:20, 09:20, 15:20 & 21:20 UTC</td>
<td>04:30, 09:45, 16:30, 21:45 UTC</td>
</tr>
<tr>
<td>Horizontal grid resolution</td>
<td>1°</td>
<td>0.1°</td>
<td>0.0625°</td>
</tr>
<tr>
<td>Forecast horizon</td>
<td>180 h</td>
<td>48 h</td>
<td>78 h</td>
</tr>
<tr>
<td>Forecast resolution</td>
<td>Up to 15 min</td>
<td>Up to 15 min</td>
<td>Up to 15 min</td>
</tr>
<tr>
<td>Grid points</td>
<td>64,800</td>
<td>145,000</td>
<td>436,905</td>
</tr>
<tr>
<td>Available forecast data</td>
<td>Wind speed, direction & temperature in 10 and 30 m</td>
<td>Wind speed, direction & temperature in 10, 30 and 95 m</td>
<td>Wind speed & direction in 10, 34, 68, 115 m; Temperature in 2, 34, 68, 115 m</td>
</tr>
</tbody>
</table>
Wind farm static information for forecasting

- Wind farm ID
- Turbine information
 - Type
 - Manufacturer
 - Size
 - Model
 - Hub Height
- Installed capacity
- Maximum Export Capacity
- Nearest connecting stations
- Grid co ordinates
- Effective date

More accurate information = Better forecast
Contents

• The Eirgrid Journey

• Present System and Applications

• Service received from suppliers

• Supplier Forecast Modelling

• Future / Research
Future / Research –
European Research Projects

Development of a Next generation wind resource forecasting system
for the large-scale integration of Onshore and Offshore wind farms

Research project supported by the European Commission under the 5th framework Program

The aim of SafeWind is to substantially improve wind power predictability in these challenging or extreme situations. Going beyond this, wind predictability is considered as a system parameter linked to the resource assessment phase, where the aim is to take optimal decisions for the installation of a new wind farm.

ANEMOS.PLUS
Project no.: 038692
Advanced Tools for the Management of Electricity Grids with Large-Scale Wind Generation
STReP
Thematic Priority: Priority 6.1 “Sustainable Energy Systems”

Start date of project: 01-01-2008
Duration: 42 Months
Power System Seminar Presentation
Wind Forecasting and Dispatch
7th July, 2011

Accuracy of Wind Forecasts

Michael Coone
Power System Operational Planning
Operations
EirGrid
Contents

• Benchmarking

• Wind Forecast Inaccuracies

• Error Types

• Improvement Initiatives
Wind Forecast Analysis - Benchmarking

• Mean Absolute Error – M.A.E

\[\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j| \]

• The Average Absolute Error Averaged Over Days, Months, Years
• Normalised to Installed Capacity
• For 0 – 48Hr Forecast Horizons.

• Root Mean Square Error – R.M.S.E

\[RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} e_i^2} \]

• The Root Mean Square Error Summed Over Days, Months, Years.
• Normalised to Installed Capacity
• For 0 – 48Hr Forecast Horizons.
Wind Forecast Analysis - Unpredictability

![Daily Mean Absolute Error Graph]

- Graph title: Daily Mean Absolute Error
- X-axis: Forecast Horizon (0 Hrs to 48 Hrs)
- Y-axis: % Installed Capacity (0.00% to 9.00%)
- Legend: 14/07/2010
Wind Forecast Analysis - Unpredictability
Wind Power Forecast Annual Performance

Annual RMS Error

- RMSE forecast error
- MAE forecast error

Annual Mean Absolute Error
Wind Forecast Analysis - Inaccuracies

- Process Time - Weather Observation Made Hours Before Forecast Delivery

- Inaccuracies Associated with the Weather Model
 - Strength of Pressure Systems
 - Location of Weather Fronts
 - Hub Height Wind Speeds

- Inaccuracies Associated with the Weather to Power Conversion

- Forecast Model Assumes Wind Farms Are at all Times Fully Available Without Taking Maintenance Schedules into Account.

- Forecast Model Does Not take into Account Wind Farm Constraint or Curtailment
Consequences – Types of Error

- Phase Error – The timing of ramping events
- Peak Error – Strength of Low Pressure
- Uncertainty in Location of Weather Fronts
 - North/Southward (Peak Sensitive)
 - East/Westward (Phase Sensitive)
- Ramping Between 6 m/s-12 m/s – Short Ramps Up and Down
- Cut-Off – High Speed Shut Down Events
- Large Ensemble Spread Forecasts – Large Uncertainty
Improvement Initiatives

• Monthly Accuracy Review

• Vendor Performance Incentive

• Constant Wind Forecast Training

• More Information to Vendors;
 • More reflective Installed Capacity and MEC Values
 • Outage Information
 • Real Time Metered Data
 • Real time Wind Speed data
 • Wind farm Static Data: Hub Height, Orientation, Topography etc.

• Planning for Error
Wind Forecast Analysis – Confidence Graphs

Absolute Error of 10%-20% Installed Capacity Wind Forecast

- Mean error
- 95% Confidence
- 99.7% Confidence

Hour Horizon
Wind Forecast Analysis – Confidence Graphs

Absolute Error of 40%-50% Installed Capacity Wind Forecast

- Mean error
- 95% Confidence
- 99.7% Confidence

Hour Horizon
Using Forecasts and Dispatching Wind from NCC

Marie Hayden
Manager Power System Operational Planning
Contents

• Accounting for Forecast Errors in Unit Commitment

• Planning for the sudden loss of a lot of wind generation

• Dispatching Wind / Priority Dispatch
Contents

• Accounting for Forecast Errors in Unit Commitment

• Planning for the sudden loss of a lot of wind generation

• Dispatching Wind / Priority Dispatch
Accounting for Forecast Errors in Unit Commitment

• Previous Seminars have covered the topic of Unit Commitment
• EirGrid performs day ahead scheduling on completion of the Market Ex-Ante run
• Scheduling is based on forecast values for:
 • Availability
 • Demand
 • Wind
• Scheduling must take account of changes in any of these key inputs
 • Unexpected changes in Generation Availability are accounted for by scheduling operating reserve
 • Accounting for Wind Forecast errors is more of an art than a science at the moment
Accounting for Forecast Errors in Unit Commitment

• Before running the Scheduling Software schedulers review the Wind Forecast
• They often adjust it taking account of:
 • Is the forecast for high, medium or low wind?
 • Is it a flat or variable forecast?
 • Is the confidence interval narrow or wide?
 • Which direction is the weather front coming from?

• What actions are taken
 • Forecasts for the valley are often adjusted upwards
 • Forecasts for the peak are often adjusted downwards
This forecast is flat and low so no adjustments would be made.
This forecast is rising from midnight until the peak – considerable error can occur so adjustments would be made.
Contents

• Accounting for Forecast Errors in Unit Commitment

• Planning for the sudden loss of a lot of wind generation

• Dispatching Wind / Priority Dispatch
Operating Reserve

• Operating Reserve is carried to ensure the system remains stable following the loss of the largest single infeed.

• It is carried in different time frames:
 - Primary: 5-15 seconds
 - Secondary: 15-90 seconds
 - Tertiary 1: 90 seconds to 5 minutes
 - Tertiary 2: 20 minutes
 - Replacement: 4 hours

• It is expected that as wind capacity increases on the system operating reserve policy will have an explicit wind factor in it based on the wind forecast.
 Fault Ride Through

• Refers to a generation unit's capability to remain connected to the power system during a short circuit

• Example:
 • On 9th May there was a lightening strike which resulted in a three phase fault on a 110kV line in the meshed transmission system.
 • Over 121MW and wind output tripped.
 • This represented a significant % (at least 25%) of the wind generation in the area at the time
 • It causes a frequency disturbance shown on the next slide

• We may need to account for this by dispatching wind down / off and this needs to be taken account of in the forecasts
System Frequency Impact of FRT Failure on 9th May

System Frequency - 09-May-11 From 16:00:00 To 16:29:59
Contents

• Accounting for Forecast Errors in Unit Commitment

• Planning for the sudden loss of a lot of wind generation

• Dispatching Wind / Priority Dispatch
NCC Wind Dispatch

- There are 130 Wind Farms connected to the transmission and distributions system
- Totalling 1530MW of capacity
- Out of 130 Wind Farms NCC Has:
 - SCADA on 65 Wind Farms ≈ 1300MW
 - Control commissioned on 42 of those Wind Farms ≈ 1000MW
 - NCC can control 66% of Wind Output
No Windfarms are staffed - Dispatch is via remote control from NCC’s Wind Dispatch Tool

Successful control requires a number of systems to operate
- Energy Management System Code
- Communications Links
- Remote Terminal Units in Stations
- Voltage and Current Measurements
- Control Devices to adjust power and voltage

If remote control does not work NCC will revert to phone calls and ultimately to opening Circuit Breakers
Wind Dispatch Tool Graphical User Interface

WindFarm MW Totals

<table>
<thead>
<tr>
<th>WindFarm Name</th>
<th>Actual Exported MW</th>
<th>Available MW</th>
<th>Available Capacity</th>
<th>Curtailment Setpoint Target</th>
<th>WindFarm Controller Setpoint Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91.3</td>
<td>96.7</td>
<td>481.0</td>
<td>500.8</td>
<td>486.2</td>
</tr>
</tbody>
</table>

The following windfarms are not available for Wind Dispatch:

- BALLYBRTN
- GRSLODGE
- COOMACHO
- KINGSMTN 1
- CRGCANON
- RAHENBR2

WindFarm Details

<table>
<thead>
<tr>
<th>WindFarm Name</th>
<th>Region</th>
<th>Market Type</th>
<th>RC Enabled</th>
<th>MW Setpt NCC Control</th>
<th>Available Capacity</th>
<th>Available MW</th>
<th>Actual MW</th>
<th>Last Setpoint Issued</th>
<th>WindFarm Setpoint Feedback</th>
<th>Curtail Selected</th>
<th>Curtail Setpoint MW</th>
<th>Curtailed [Y/N]</th>
<th>Constraint Selected</th>
<th>Constraint Setpoint MW</th>
<th>Constrainted [Y/N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALWATER_PLLC1</td>
<td>STH EAST</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>42.0</td>
<td>6.2</td>
<td>6.0</td>
<td>42.0</td>
<td>42.3</td>
<td>OK</td>
<td>42.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAMHILL_PLLC1</td>
<td>NORTH</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>14.0</td>
<td>2.4</td>
<td>2.6</td>
<td>14.0</td>
<td>14.0</td>
<td>OK</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BINDO_PLLC1</td>
<td>NORTH</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>48.0</td>
<td>9.8</td>
<td>12.1</td>
<td>48.0</td>
<td>49.0</td>
<td>OK</td>
<td>48.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOOLTIAG_PLLC1</td>
<td>STH WEST</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>20.0</td>
<td>4.6</td>
<td>0.0</td>
<td>20.0</td>
<td>20.2</td>
<td>OK</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMGRLCY_PLLC1</td>
<td>STH WEST</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>43.0</td>
<td>15.3</td>
<td>15.3</td>
<td>43.0</td>
<td>42.9</td>
<td>OK</td>
<td>43.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMGRLCY_PLLC2</td>
<td>STH WEST</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>9.0</td>
<td>3.8</td>
<td>3.8</td>
<td>9.0</td>
<td>9.0</td>
<td>OK</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DERYBRIN_PLLC1</td>
<td>STH WEST</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>60.0</td>
<td>60.0</td>
<td>OK</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRUMHILL_PLLC2</td>
<td>NORTH</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>10.0</td>
<td>1.6</td>
<td>1.5</td>
<td>0.0</td>
<td>12.5</td>
<td>Not OK</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GARVAGH_PLLC1</td>
<td>NORTH</td>
<td>AUT</td>
<td>ON</td>
<td>OFF</td>
<td>32.0</td>
<td>3.4</td>
<td>3.6</td>
<td>0.0</td>
<td>31.8</td>
<td>OK</td>
<td>31.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GARVAGH_PLLC2</td>
<td>NORTH</td>
<td>AUT</td>
<td>ON</td>
<td>OFF</td>
<td>27.0</td>
<td>3.6</td>
<td>3.5</td>
<td>27.0</td>
<td>26.9</td>
<td>OK</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLANLIE_PLLC1</td>
<td>STH WEST</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>30.0</td>
<td>12.2</td>
<td>12.2</td>
<td>30.0</td>
<td>30.0</td>
<td>OK</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LISHEEN_PLLC1</td>
<td>STH EAST</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>55.0</td>
<td>7.8</td>
<td>7.9</td>
<td>55.0</td>
<td>55.2</td>
<td>OK</td>
<td>55.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEENTCAT_PLLC1</td>
<td>NORTH</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>85.0</td>
<td>12.0</td>
<td>10.4</td>
<td>85.0</td>
<td>85.7</td>
<td>OK</td>
<td>85.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCHFIELD_PLLC1</td>
<td>STH EAST</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>27.0</td>
<td>2.9</td>
<td>3.2</td>
<td>27.0</td>
<td>27.0</td>
<td>OK</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORNHILL_PLLC1</td>
<td>NORTH</td>
<td>VPT</td>
<td>ON</td>
<td>OFF</td>
<td>39.0</td>
<td>10.2</td>
<td>9.2</td>
<td>39.0</td>
<td>39.0</td>
<td>OK</td>
<td>39.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Auto Select Curtail VPT
- Auto Select Curtail ALL

1. Select WF, Enter Setpoints
2. Calculate Curtailment Setpoints
3. Issue Curtailment Setpoints
4. Remove Curtailments
Reasons for Dispatching Wind

• The three most commonly occurring reasons today are:
 • To manage transmission equipment loading constraints
 • To ensure that there is sufficient Inertia on the Power System
 • Because system demand is too low

• The first reason is usually called a Wind Constraint

• The latter two are commonly referred to as Wind Curtailment

• In the future we can foresee wind being dispatched down for other reasons such as:
 • To ensure the system is transiently stable
 • To provide frequency regulation
 • To provide operating reserve
Transmission Constraints

- Wind is constrained down to avoid overloads on transmission plant
- Non-firm connections driving an increase in incidents of constraint
- Transmission constraints are common during the transmission outage season which runs from the end of March until the end of October
- Donegal and West Cork / South Kerry most constrained areas
TRANSMISSION SYSTEM 400KV, 275KV, 220KV AND 110KV - JANUARY 2011
Example of Transmission Constraint

\[\sum \text{Installed Wind North of Cathaleen’s Fall} = 189 \text{MW} \]
\[\sum \text{Demand at Letterkenny} = \text{Ranges 20MW (Valley) to 76MW (Peak)} \]
Max Net Export from Region ranges from 113MW to 169MW
Lines in the area only rated for 110MW
Wind constraints range from 0 to 59MW = 0 to 31%
Wind Curtailment for Inertial Stability

• To maintain sufficient inertia one of the system rules presently in place is
 “no more than 50% of (system demand + Interconnector Exports) can be supplied from non-synchronous generation (Wind/Interconnector Imports)”

<table>
<thead>
<tr>
<th></th>
<th>Ireland MW</th>
<th>Northern Ireland MW</th>
<th>Total MW</th>
<th>Max Non-sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Demand</td>
<td>5090</td>
<td>1777</td>
<td>6867</td>
<td>3433MW</td>
</tr>
<tr>
<td>Valley Demand</td>
<td>1685</td>
<td>725</td>
<td>2410</td>
<td>1205MW</td>
</tr>
</tbody>
</table>
Wind Curtailment for Inertial Stability

• To maintain sufficient inertia one of the system rules presently in place is
 “no more than 50% of (system demand + Interconnector Exports) can be supplied from non-synchronous generation (Wind/Interconnector Imports)”

<table>
<thead>
<tr>
<th></th>
<th>Ireland MW</th>
<th>Northern Ireland MW</th>
<th>Total MW</th>
<th>Max Non-sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Demand</td>
<td>5090</td>
<td>1777</td>
<td>6867</td>
<td>3433MW</td>
</tr>
<tr>
<td>Valley Demand</td>
<td>1685</td>
<td>725</td>
<td>2410</td>
<td>1205MW</td>
</tr>
</tbody>
</table>

• Installed wind today on the Island is just under 1900MW

• The 50% rule does not bind very often today but is expected to more in the future
Wind Curtailment due to insufficient demand

- NCC must at all times ensure generation output = system demand

- This is done in subject to
 - System constraints
 - priority dispatch
 - merit order principles

- System constraints include
 - Provision of sufficient operating reserve
 - System inertial stability
 - Transient & Voltage stability
 - Transmission thermal overload constraints
 - Morning ramping constraints
Wind Curtailment due to insufficient demand

- NCC will first dispatch to satisfy stability constraints and then dispatch according to merit order / priority dispatch.

- Units with Priority Dispatch on the system at the moment are:
 - Wind
 - CHP
 - Hydro
 - Peat

- Flows on the Moyle Interconnector are fixed day ahead and are not adjusted by the System Operators unless there is a system security issue.
Example of Summer Night Valley

- System Demand = 1800MW

- Constraint 1: Voltage constraint in Dublin:
 - Constraints on Poolbeg Combined Cycle, Dublin Bay Power and Huntstown Combined Cycle
 - $\sum\text{Min Generation} = 670MW$

- Constraint 2: System Inertial Stability requires 5 large units on load
 - Constraints on Moneypoint 1 and 2
 - $\sum\text{Min Generation} = 230MW$

- Constraint 3: Operating Reserve
 - Constrains on Whitegate 1, Tynagh and one Gas Turbine
 - $\sum\text{Min Generation} = 400MW$

- Satisfying System Constraints requires 1230MW of plant on load
Wind Curtailment due to insufficient demand

- This leaves 1800-1230 = 570MW for other generation which will be made up of:
 - Moyle driven flows = 200MW
 - Minimum Generation on two peat units = 90MW
 - CHP Minimum Load = 80MW
 - Hydro Dispatched to 0MW
- All in all this leaves 200MW for wind

- Wind Forecast is 700MW which will drive a curtailment of 500MW over the valley period

- The continued forced outage of Turlough Hill and the reduction in system demand have both had a significant impact on the incidence of wind curtailment at night
Questions?