Transmission Development
Plan 2015-2025
Disclaimer

While all reasonable care has been taken to prepare this document, we can make no guarantee to the quality, accuracy and completeness of the information herein. We do not accept responsibility for any loss associated with the use of this information. Use of this document and the information it contains is at the user's own risk.

Information in this document does not amount to a recommendation as regards to any possible investment. Before taking a business decision based on the content of this document, we advise that interested parties seek separate and independent opinion in relation to the matters covered by this document.

Copyright Notice

All rights reserved. This entire publication is subject to the laws of copyright. This publication may not be reproduced or transmitted in any form or by any means, electronic or manual, including photocopying without the prior written permission of the TSO.
Table of Contents

DOCUMENT STRUCTURE ... 6

ABBREVIATIONS & GLOSSARY OF TERMS ... 8

 Abbreviations ... 8
 Glossary of Terms .. 11

EXECUTIVE SUMMARY ... 18

1 **INTRODUCTION** ... 21

 1.1 Statutory and Legal Requirements .. 21
 1.1.1 National Statutory and Licence Requirements 22
 1.1.2 European Statutory Requirements 22
 1.2 Transmission Development Plan (TDP) 23
 1.3 Context of the Plan .. 23
 1.3.1 All-Island and European Context 23
 1.4 TDP 2014 ... 24
 1.5 Grid Development Strategy – Currently Under Review 25
 1.6 Reviewing and Improving our Public Consultation Process 26
 1.7 TDP 2015 ... 27
 1.8 Data Management .. 27
 1.9 Planning Area Categorisation ... 28

2 **APPROACH AND METHODOLOGY** .. 30

 2.1 Development Objectives and Strategies 30
 2.2 The Transmission Planning Criteria (TPC) 30
 2.3 Public Planning and Environmental Considerations 31
 2.3.1 A Dynamic Process .. 31
 2.3.2 Public Planning Considerations 32
 2.3.3 Environmental Considerations 35
 2.4 Network Development Planning Process 37
 2.4.1 Stages in the Network Development Process 37
 2.5 Refurbishment Planning Process ... 43

3 **INVESTMENT NEEDS** ... 48

 3.1 Strategic Context of Transmission Network Investment 48

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>National and EU Energy Policy</td>
<td>50</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Security of Supply</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Competitiveness</td>
<td>50</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Sustainability</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Policy Drivers of Transmission Network Investment</td>
<td>50</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Security of Transmission Network</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Market Integration</td>
<td>51</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Renewable Energy Sources (RES) Integration</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Technical Drivers for Transmission Network Investment</td>
<td>52</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Demand, Generation and Interconnection</td>
<td>52</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Changes in Inter-Regional Power Flows</td>
<td>55</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Changes in Asset Condition</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Network Development Needs</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>CHANGES TO THE PLAN SINCE 2013</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>PLANNED NETWORK DEVELOPMENTS</td>
<td>60</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview of the Plan</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of Phase of Projects</td>
<td>61</td>
</tr>
<tr>
<td>5.3</td>
<td>Project Delivery</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>REGIONAL PERSPECTIVE OF THE PLAN</td>
<td>67</td>
</tr>
<tr>
<td>6.1</td>
<td>Overview</td>
<td>67</td>
</tr>
<tr>
<td>6.2</td>
<td>The Border, Midlands & West Planning Area</td>
<td>69</td>
</tr>
<tr>
<td>6.3</td>
<td>The South-West & Mid-West Planning Area</td>
<td>82</td>
</tr>
<tr>
<td>6.4</td>
<td>The South-East, Mid-East & Dublin Planning Area</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>SUMMARY OF ENVIRONMENTAL APPRAISAL REPORT (EAR)</td>
<td>104</td>
</tr>
</tbody>
</table>

APPENDIX A: PROJECT TERMS | 105 |
APPENDIX B: CHANGES SINCE 2013 | 107 |
Projects Completed since TDP 2013 | 107 |
Projects Cancelled since TDP 2013 | 110 |
Projects On Hold | 110 |
APPENDIX C: PLANNED NETWORK DEVELOPMENTS | 112 |
Data Management | 112 |
Projects in Multiple Planning Areas: | 114 |
DOCUMENT STRUCTURE

This document contains an Abbreviations and Glossary of Terms section, an Executive Summary, seven main sections and five appendices. The structure of the document is as follows:

The **Abbreviations and Glossary of Terms** provides a glossary of terms used in the document.

The **Executive Summary** gives an overview of the main highlights of the document and presents the plan in summary terms.

Section 1: Introduction: our statutory and legal obligations are introduced. The purpose and context of the TDP is outlined.

Section 2: Approach & Methodology: describes our approach to the network planning process and the strategies employed.

Section 3: Investment Needs: the drivers of network development are introduced and discussed, from which the needs of the network are identified through the application of the transmission development approach discussed in section 2.

Section 4: Changes to the Plan since 2013: provides information on the changes to the transmission network development plan between TDP 2013 and TDP 2015.

Section 5: Planned Network Developments: summarises the development projects that are currently in progress. These are the transmission projects which solve the network needs identified and discussed in section 3.

Section 6: Regional Perspective of the Plan: summarises and categorises the development projects that are currently in progress by planning area.

Section 7: Summary of Environmental Appraisal Report (EAR): summarises the EAR of TDP 2015.

Appendix A: Project Terms

Appendix B: Changes since 2013
Appendix C: Planned Network Developments

Appendix D: Irish Projects in European Plans

Appendix E: References
ABBREVIATIONS & GLOSSARY OF TERMS

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Appropriate Assessment</td>
</tr>
<tr>
<td>ABP</td>
<td>An Bord Pleanála</td>
</tr>
<tr>
<td>CER</td>
<td>Commission for Energy Regulation</td>
</tr>
<tr>
<td>CP No.</td>
<td>Capital Project Identification Number</td>
</tr>
<tr>
<td>CPP</td>
<td>Committed Project Parameters</td>
</tr>
<tr>
<td>DSO</td>
<td>Distribution System Operator</td>
</tr>
<tr>
<td>EAR</td>
<td>Environmental Appraisal Report</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ECD</td>
<td>Estimated Completion Date</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>ENTSO-E</td>
<td>European Network of Transmission System Operators for Electricity</td>
</tr>
<tr>
<td>ER</td>
<td>Environmental Report</td>
</tr>
<tr>
<td>ESB</td>
<td>Electricity Supply Board</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>GCS</td>
<td>Generation Capacity Statement</td>
</tr>
<tr>
<td>GIS</td>
<td>Gas Insulated Switchgear</td>
</tr>
<tr>
<td>GW</td>
<td>Gigawatt</td>
</tr>
<tr>
<td>HV</td>
<td>High Voltage</td>
</tr>
<tr>
<td>HVDC</td>
<td>High Voltage Direct Current</td>
</tr>
<tr>
<td>IA</td>
<td>Infrastructure Agreement</td>
</tr>
</tbody>
</table>
IP Implementation Programme
LPA Local Planning Authority
MEC Maximum Export Capacity
MIC Maximum Import Capacity
MW Megawatt
NIS Natura Impact Statement
PA Project Agreement
RegIP Regional Investment Plan
RES Renewable Energy Sources
RGNS Regional Group North Sea
RIDP Renewable Integration Development Project
SAC Special Area of Conservation
SEA Strategic Environmental Assessment
SI60 Statutory Instrument No. 60 of 2005
SI147 Statutory Instrument No. 147 of 2011
SONI System Operator Northern Ireland
SPA Special Protection Areas
TAO Transmission Asset Owner
TDP Transmission Development Plan
TPC Transmission Planning Criteria
TSO Transmission System Operator
TSSPS Transmission System Security and Planning Standards
<table>
<thead>
<tr>
<th>TYNDP</th>
<th>Ten-Year Network Development Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYTFS</td>
<td>Ten Year Transmission Forecast Statement</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay</td>
<td>A bay is a connection point to a busbar, and comprises switchgear and measurement equipment.</td>
</tr>
<tr>
<td>Busbar</td>
<td>An electrical conductor located in a station that makes a common connection between several circuits.</td>
</tr>
<tr>
<td>Capacitor</td>
<td>An item of plant normally utilised on the electrical network to supply reactive power to loads (generally locally) and thereby supporting the local area voltage.</td>
</tr>
<tr>
<td>Circuit</td>
<td>A line or cable, including associated switchgear, which carries electrical power.</td>
</tr>
<tr>
<td>Circuit Breaker</td>
<td>A device used to open a circuit that is carrying electrical current.</td>
</tr>
<tr>
<td>Combined Cycle Gas Turbine (CCGT)</td>
<td>A type of thermal generator that typically uses natural gas as a fuel source. It is a collection of gas turbines and steam units; where waste heat from the gas turbines(s) is passed through a heat recovery boiler to generate steam for the steam turbines.</td>
</tr>
<tr>
<td>Constraint</td>
<td>A change in the output of generators from the market schedule due to transmission network limitations, specifically the overloading of transmission lines, cables and transformers.</td>
</tr>
<tr>
<td>Contingency</td>
<td>An unexpected failure or outage of a network component, such as a generation unit, transmission line, transformer or...</td>
</tr>
</tbody>
</table>
other electrical element.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Reinforcement</td>
<td>Refers to network reinforcement additional to the shallow connection that is required to allow a new generator or demand to operate at maximum export or import capacity respectively.</td>
</tr>
<tr>
<td>Demand</td>
<td>The amount of electrical power that is consumed by a customer and is measured in Megawatts (MW). In a general sense, the amount of power that must be transported from transmission network connected generation stations to meet all customers' electricity requirements.</td>
</tr>
<tr>
<td>Demand-Side</td>
<td>Management The modification of normal demand patterns usually through the use of financial incentives.</td>
</tr>
<tr>
<td>Deterministic</td>
<td>The deterministic methodology is often referred to as the N-1 criterion. This means that the system must have sufficient capacity so that in the eventuality of a probable system outage, there are no resulting system problems such as overloading, under-voltage, over-voltage or instability.</td>
</tr>
<tr>
<td>Distribution System Operator</td>
<td>In the electrical power business, a distribution system operator is the licensed entity responsible for the delivery of electrical power to consumers.</td>
</tr>
<tr>
<td>EirGrid</td>
<td>The independent statutory electricity TSO in Ireland.</td>
</tr>
<tr>
<td>Embedded</td>
<td>Refers to generation that is connected to the distribution</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Generation network or at a customer's site</td>
<td></td>
</tr>
<tr>
<td>Gas Insulated Switchgear (GIS)</td>
<td>A compact form of switchgear where the conductors and circuit breakers are insulated by an inert gas (that is, SF₆).</td>
</tr>
<tr>
<td>Gate</td>
<td>A group processing mechanism to efficiently process large volumes of connection applications from renewable and conventional generators wishing to connect to the transmission or distribution systems. This is a CER approved and directed approach.</td>
</tr>
<tr>
<td>Generation Dispatch</td>
<td>The configuration of outputs from the connected generation units.</td>
</tr>
<tr>
<td>Grid</td>
<td>A network of high voltage lines and cables (400 kV, 275 kV, 220 kV and 110 kV) used to transmit bulk electricity supplies around Ireland. The terms grid, electricity transmission network, and transmission system are used interchangeably in this Development Plan.</td>
</tr>
<tr>
<td>Intact Network</td>
<td>The transmission network with no network element removed for maintenance, replacement or repair.</td>
</tr>
<tr>
<td>Interconnector</td>
<td>The electrical link, facilities and equipment that connect the transmission network of one EU member state to another.</td>
</tr>
<tr>
<td>Maintenance trip conditions</td>
<td>This condition occurs when a network component (generation unit, transmission line, transformer or other electrical element) is out of service for maintenance, and</td>
</tr>
</tbody>
</table>

Transmission Development Plan 2015-2025
there is an unexpected failure or outage of another network component

Maximum Export Capacity (MEC)
The maximum export value (MW) provided in accordance with a generator’s connection agreement. The MEC is a contract value which the generator chooses as its maximum output.

Maximum Import Capacity (MIC)
The maximum import value (MW) provided in accordance with a customer’s connection agreement. The MIC is a contract value which a customer chooses to cater for maximum demand at their site.

Network Development Driver
A factor, based on national and European energy policy objectives, that influences or “drives” the investment in the transmission network.

Network Development Need
A deficiency or problem on the network which arises as a result of one or a number of network development drivers. Network reinforcement is required to solve a network development need.

Power Flow
The physical flow of electrical power. It is typically measured in Megavolt-Amperes (MVA) which is the product of both ‘active’ and ‘reactive’ electrical power. The flow of ‘active’ power is measured in Megawatts (MW); the flow of ‘reactive power’ is measured in Megavars (Mvar).

Phase Shifting Transformer (PST)
A type of plant employed on the electrical network to control the flow of active power.
Reactive Compensation

The process of supplying reactive power to the network to compensate for reactive power usage at a point in time.

Reactive Power

Reactive power is that portion of electricity that establishes and sustains the electric and magnetic fields of alternating current equipment. Reactive power is measured in Megavars (Mvar).

Reactor

An item of plant comprising a coil of electrical wire employed typically on the electrical network to either:

- limit short circuit levels; or
- prevent voltage rise

depending on its installation and configuration.

Shallow Connection

Shallow Connection means the local connection assets required to connect a customer, or customers, to the transmission network. These types of connections are typically for the specific benefit of that particular customer or group of customers.

Single contingency conditions

This condition occurs when the transmission network is intact and there is an unexpected failure or outage of one network component (generation unit, transmission line, transformer or other electrical element).

Summer Valley

The annual minimum electrical demand that usually occurs in August. Annual minimum demand is typically 35 % of the winter peak.
Summer Peak

The week-day peak electrical demand value between March and September, inclusive, which is typically 80% of the winter peak.

Switchgear

A combination of electrical equipment such as disconnects and/or circuit breakers used to isolate equipment in or near an electrical station.

Transformer

An item of electrical equipment that allows electrical power to flow between typically two different voltage levels in an alternating current (AC) power system.

Transmission Losses

A small proportion of energy is lost as heat or light whilst transporting electricity on the transmission network. These losses are known as transmission losses.

Transmission Peak

The peak demand that is transported on the transmission network. The transmission peak includes an estimate of transmission losses.

Transmission Planning Criteria

The set of standards that the transmission system is designed to meet. The criteria are deterministic as is the norm throughout the world. They set out objective standards which have been found to deliver an acceptable compromise between the cost of development and the transmission service provided. The criteria are also known as the Transmission System Security and Planning Standards (TSSPS).

Transmission

In the electrical power business, a transmission system
System Operator

operator is the licensed entity that is responsible for transmitting electrical power from generation plants to regional or local electricity distribution operators.

Uprate

To increase the capacity or rating of electrical equipment.

Winter Peak

This is the maximum annual system demand. It occurs in the period October to February, of the following year, inclusive. Thus, for transmission planning purposes the winter peak in 2015, the first year of this plan, may occur in early 2016. The winter peak figures take account of the impact of projected Demand Side Management initiatives.
EXECUTIVE SUMMARY

The Transmission Development Plan (TDP) 2015-2025 is the plan for the development of the Irish transmission network and interconnection over the ten years from 2015. The TDP 2015-2025 supersedes the TDP 2013-2023. This ten year plan presents projects that are needed for the operation of the transmission network. In addition, future needs that may drive future potential projects are also discussed.

This report has been prepared in accordance with Regulation 8(6) of Statutory Instrument No. 445 of 2000, European Communities (Internal Market in Electricity) Regulations and Condition 8 of the TSO Licence.

Drivers of Transmission Network Development

The development of the Irish electricity sector is guided by a number of national and European Union (EU) rules and strategic objectives. These objectives guide investment in the Irish transmission network and are summarised as follows:

- Ensuring the security of electricity supply;
- Ensuring the competitiveness of the national economy; and
- Ensuring the long-term sustainability of electricity supply in the country.

In order to achieve these strategic objectives, we must invest in the development and maintenance of the electricity transmission network. Drivers of investment include:

- Securing transmission network supplies;
- Promoting market integration; and
- Promoting the integration of Renewable Energy Sources (RES) and complementary thermal generation.

As demand or generation changes, or as the transmission network becomes more interconnected with neighbouring transmission networks, the flow of electrical energy throughout the transmission network changes. To accommodate these changes in

1 Please note that this is not an all-island (i.e. Ireland and Northern Ireland) TDP.
2 The European electric power transmission networks are interconnected, so as to be able to transmit energy from one country to the other.
power flows it is often necessary to modify or strengthen the transmission network to ensure performance and reliability levels are upheld.

In addition, the condition of transmission network assets is a factor. The timely maintenance or replacement of assets is required to provide the necessary level of security of supply.

It is possible to separate the resulting reinforcement needs into a number of categories:

- Reinforcements required to support changes in, or connection of new demand;
- Reinforcements required to support changes in, or connection of new generation;
- Reinforcements related to interconnection;
- Reinforcements to facilitate inter-regional power flows; and
- Reinforcements to address the condition of existing assets.

Transmission Network Reinforcements

This development plan considers the 125 projects that are underway.

<table>
<thead>
<tr>
<th>Project Category</th>
<th>Border, Midlands, West Planning Area</th>
<th>South-West, Mid-West Planning Area</th>
<th>South-East, Mid-East, Dublin Planning Area</th>
<th>National Projects</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>10</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Uprate/Modify</td>
<td>26</td>
<td>21</td>
<td>15</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>Refurbish/Replace</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td>38</td>
<td>39</td>
<td>38</td>
<td>10</td>
<td>125</td>
</tr>
</tbody>
</table>

Table 1: Summary of Number of Projects in Progress by Region and Project Category

These involve multiple individual projects at various locations across the country.
Capital Expenditure

The 125 transmission development projects need funding for the timeframe addressed by this TDP (2015-2025) and beyond.

The Commission for Energy Regulation's (CER) approved allowable transmission revenues for the current price review period (2011-2015, CER/10/206) allows for a spend of €1.45 billion.

The CER and EirGrid have a framework (PR3 Transmission Capital Expenditure Monitoring) for monitoring transmission capital expenditure. This framework provides flexibility to respond to the identified needs which are influenced by external factors; including new generation and demand levels, amongst others. Expenditure beyond 2015 will be considered and approved in future price reviews.

Data Management

Transmission network development is ever evolving. To allow for comparison of network development projects on a year-on-year basis, data is represented at a fixed point in time – the data freeze date. The data freeze date of TDP 2015 is 31 March 2015.
1 INTRODUCTION

The transmission system is a network of 400 kV, 275 kV, 220 kV and 110 kV high voltage lines and cables. It is the backbone of the power system; efficiently delivering large amounts of power from where it is generated to where it is needed, safely and reliably.

Electricity supply is essential, and a reliable electricity network is the means by which we move electricity around the country. The development of transmission network infrastructure is therefore, of national strategic importance.

This TDP outlines the:

- Drivers of network development;
- Network investment needs; and
- Projects required addressing these needs.

1.1 Statutory and Legal Requirements

National and European regulations that are relevant to planning the transmission network include:

<table>
<thead>
<tr>
<th>National Requirements</th>
<th>European Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>EirGrid’s TSO Licence</td>
<td>Directive 2009/ 28/ EC</td>
</tr>
<tr>
<td></td>
<td>Directive 2012/ 27/ EC</td>
</tr>
</tbody>
</table>

Table 1-1 National and European regulations relevant to the TDP

4 SI No. 445 of 2000, European Communities (Internal Market in Electricity) Regulations
5 SI No. 147 of 2011, European Communities (Renewable Energy) Regulations 2011
6 The current TSO Licence was issued by the CER to EirGrid in 2009 and came into legal effect on the 2nd of March 2009
1.1.1 National Statutory and Licence Requirements

- Statutory Instrument (SI) No. 445 of 2000 as amended
 - Regulation 8(1)(i);
 - Regulation 8(1)(a) (as inserted by SI60/2005 Regulation 6(2));
 - Regulation 8(1)(c) (as inserted by SI60/2005 Regulation 6(1)(b));
 - Regulation 8(3); Regulation 8(6); Regulation 8(8);
 - Regulation 19; Regulation 19(a), subject to the provisions of Regulation 18(3)

- Statutory Instrument (SI) No. 147 of 2011
 - Regulation 4(1) of SI147/2011

- EirGrid’s TSO Licence
 - Condition 3; Condition 8

1.1.2 European Statutory Requirements

- Regulation (EC) No 714/2009
 - Article 4; Article 8 paragraph 3(b); Article 12

- Directive 2009/72/EC
 - Paragraph’s 1 and 4 of Article 22

- Directive 2009/28/EC
 - Paragraph 2 of Article 16

- Directive 2012/27/EC
 - Paragraph 5 of Article 15

7 Statutory Instrument No. 445 of 2000, European Communities (Internal Market in Electricity) Regulations
8 Statutory Instrument No. 147 of 2011, European Communities (Renewable Energy) Regulations 2011
9 The current TSO Licence was issued by the CER to EirGrid in 2009 and came into legal effect on the 2nd of March 2009
We are responsible for the operation and development of the transmission network within Ireland. We have both statutory and licence obligations to produce a TDP annually and contribute to a European Ten-Year Network Development Plan (TYNDP) every two years.

1.2 Transmission Development Plan (TDP)

This TDP covers a period of ten years which is in line with the European Network of Transmission System Operators for Electricity’s (ENTSO-E) TYNDP. As part of the preparation of the TDP, we consult with System Operator Northern Ireland (SONI) to ensure that the information in the TDP is accurate. A public consultation on the draft TDP is held prior to submitting it to the Commission for Energy Regulation (CER) for approval.

Following feedback received from the public consultation we update the TDP, as required, and provide a report to the CER on feedback received.

The Transmission Asset Owner (TAO) Electricity Supply Board (ESB) is responsible for the construction of projects; this document provides them with the information they need to plan construction and maintenance on the network.

1.3 Context of the Plan

The development of the transmission network involves forecasting future needs. Planning solutions to address these needs must strike a balance between network reliability, costs and environmental impacts. The process is flexible to enable the long-term development of the network.

Considerations that shape the medium and long-term development of the transmission network are outlined below.

1.3.1 All-Island and European Context

Our TSO licence obliges us to carry out transmission planning on a coordinated all-island basis in conjunction with SONI. This commitment is outlined in the System Operator Agreement. Together we now publish All-Island Generation Capacity and Transmission Forecast Statements. The aim of coordinated planning is to ensure, as far
as possible, that projects developed, particularly in border areas, will benefit the entire island.

European legislation requires all European TSOs to cooperate through ENTSO-E. ENTSO-E has six regional groups that co-ordinate network planning and development at regional level. We are members of the Regional Group North Sea (RGNS), which also includes SONI and the TSOs of Belgium, Denmark, France, Germany, Great Britain, Luxembourg, Netherlands and Norway. One of the duties of RGNS is to produce a Regional Investment Plan (RegIP) every two years. This RegIP together with the other five RegIPs feed into ENTSO-E’s TYNDP.

A number of projects of European significance\(^\text{10}\) are identified in this TDP, using the following labels: “\(\text{TYNDP/ TYNDP_Project_No}\)” or “\(\text{RegIP/ RegIP_Project_No}\)”.

These projects are also included in the TYNDP\(^\text{11}\) and RGNS RegIP\(^\text{12}\) documents issued in 2014, and are listed in Appendix D.

1.4 TDP 2014

Historically TDPs were prepared under our grid development strategy Grid25. The TDP included projects being progressed in the timeframe of that TDP, as per the provisions of the governing strategy. The relationship between TDPs, Grid25 and related documents is described in detail in section 2.3.1 and illustrated in Figure 2-1.

In 2014 we undertook a comprehensive review of our grid development strategy. The review resulted in the publication of a discussion paper on a new draft grid development strategy, “Your Grid, Your Views, Your Tomorrow.” published in March 2015. The technical analysis of this document set out the drivers, strategic need and strategic overview of network development across the country. This analysis has informed the preparation of TDP 2015.

\(^{10}\text{Please see Appendix D for information on what qualifies a project to be of European significance}\)

\(^{11}\text{https://www.entsoe.eu/Documents/TYNDP\%20documents/TYNDP\%202014/141031\%20TYNDP\%202014\%20Report_.pdf}\)

\(^{12}\text{https://www.entsoe.eu/Documents/TYNDP\%20documents/TYNDP\%202014/141031\%20RegIP\%20NS_.pdf}\)
Given that a comprehensive review of the governing strategy was underway, it was considered appropriate not to publish a TDP in 2014. The “Your Grid, Your Views, Your Tomorrow.” discussion paper was the subject of a public consultation process from 27 March 2015 to 5 June 2015. As part of the process we also held three regional forums to receive feedback from communities and representative groups across the country. These forums were facilitated by Irish Rural Link.

The final strategy will support Ireland’s wider policy objectives: economic; environmental and social (including the Government’s Energy White Paper); the Government’s Action Plan for Jobs; and the Industrial Development Authority’s (IDA Ireland) Regional Development Strategy.

1.5 Grid Development Strategy – Currently Under Review

As stated above, we recently published a discussion paper on Ireland’s grid development strategy. This review is available at www.eirgridgroup.com. The review outlines our proposed strategy for the long-term development of the network. The proposed grid development strategy was developed in consideration of our three new strategy statements:

- Strategy statement 1: Open engagement and inclusive consultation with local communities and stakeholders will be central to our approach to network development.
- Strategy statement 2: All practical technology options will be considered for network development.
- Strategy statement 3: The network will be optimised to minimise requirements for new infrastructure.

The proposed grid development strategy aims to achieve a balance between the costs and impact of new infrastructure, while maximising the capability of the existing network.

In the Technical Analysis (Appendix 1) of the discussion paper, we review the drivers of network development, such as changes in demand, generation and interconnection. A
review and description of available and possible future technologies is also included. Regional network developments are described and summarised.

The Technical Analysis informed the preparation of this TDP.

This TDP presents the network developments required to deliver the strategy, meeting future requirements as expected at this time. Each of the projects contained within this TDP is the product of on-going reviews that take into account changes in drivers and needs; ensuring projects are cost effective and optimally timed.

1.6 Reviewing and Improving our Public Consultation Process

In December 2014, we published a commitment paper – Reviewing and Improving our public consultation process (available at www.eirgridgroup.com).

This paper is a response to feedback received on our public consultations and took into consideration the following four inputs:

- A review of public feedback;
- A review of international best practice in public consultation;
- An independent external expert review carried out by SLR Consulting Limited; and
- An independent external expert review carried out by the Chartered Institute of Arbitrators.

Three common themes emerged from the examination of our public consultation process:

- A need to develop a participative approach;
- Change our Culture and Processes; and
- Encourage Leadership & Advocacy.

In response to the stakeholder feedback, we proposed 12 commitments\(^\text{13}\) intended to improve the way we engage with the public and stakeholders in the development of

\(^{13}\) The 12 commitments can be found in the commitment paper – Reviewing and Improving our public consultation process
network projects. These 12 commitments will be at the centre of our new approach to network development.

1.7 TDP 2015

TDP 2015 presents our view of future transmission needs and our plan to develop the network, through specific projects, to meet these needs over the next ten years.

It is possible that changes will occur in the need for, scope of, and timing of the listed developments. Similarly, it is likely, given the continuously changing nature of electricity requirements, that new developments will emerge that could impact the plan as presented. These changes will be identified in future studies and accommodated in future TDPs, and as such, the long-term development of the network is under review on an on-going basis.

This TDP presents those projects we have identified as being required to solve needs on the transmission network which are currently being advanced. In addition, future needs that drive future potential projects are also discussed.

1.8 Data Management

Transmission network development is continuously evolving. To facilitate the comparison of network development projects year-on-year, and in the interest of routine reporting, data is represented at a fixed point in time; the data freeze date. The TDP therefore summarises transmission projects and the changes that have occurred since the last TDP, with data applicable as at the data freeze date, 31 March 2015.

The estimated completion dates (ECDs) for some transmission projects are available and updated on an on-going basis at the following 2 websites:

- Associated Transmission Reinforcements on www.eirgridgroup.com
1.9 Planning Area Categorisation

As power flows on the transmission network are not contained within specific counties, from a transmission planning perspective it is more appropriate to represent groups of counties as natural planning areas. There are three planning areas that best reflect the conditions and power flows on the transmission network; these are:

- The Border, Midlands & West;
- The Mid-West & South-West; and
- The South-East, Mid-East and Dublin.

These three planning areas are in line with the eight statutory planning regions in Ireland, as outlined in the National Spatial Strategy. The regions and planning areas are illustrated in the map below.
Figure 1-1 Illustration of the three Planning Areas and the underlying Statutory Regions

Planned projects are categorised in Chapter 6 “Regional Perspective of the Plan” on a planning area basis as defined above.
2 APPROACH AND METHODOLOGY

2.1 Development Objectives and Strategies

As TSO, we are obliged to develop a safe, secure, reliable, economical, and efficient transmission network to meet all reasonable demands for electricity, in accordance with legal obligations.

We plan the development of the transmission network taking account of the long-term needs and the economics of various development options. The need for development is determined by assessing long-term future network performance against technical standards. These technical standards are embodied in the Transmission Planning Criteria (TPC) discussed below (also referred to as the Transmission System Security and Planning Standards (TSSPS)). When it is established that changes on the network cannot be accommodated without violating the TPC, a range of issues are considered when selecting a transmission reinforcement strategy.

When assessing development options to address future potential network needs, we consider the impacts of each possible option on other potential development needs. Sometimes by making more effective use of the existing network, we can delay large investment or avoid the need for additional circuits.

In some cases a proposed project may meet more than one development requirement and prove more economic and have less impact on the environment than multiple projects. Where possible, we seek to find single development projects to meet multiple network requirements.

2.2 The Transmission Planning Criteria (TPC)14

The requirement for network development is identified when simulation of future conditions indicates that the TPC would be breached. These standards, which are in line with international standards, are set out in the TPC and can be accessed on our website, www.eirgridgroup.com.

14 Also referred to as the Transmission System Security and Planning Standards (TSSPS).
The standards are deterministic15 – as are those generally used throughout the world in transmission planning. They set out an objective standard which delivers an acceptable compromise between the cost of development and service delivered. Rather than conducting subjective benefit analysis in each case, it is preferable to plan to meet an objective standard and carry out analysis of the options available to meet the standard.

2.3 Public Planning and Environmental Considerations

2.3.1 A Dynamic Process

In October 2008 we published our grid development strategy Grid25. The resultant TDP 2008-2012 marked the beginning of a series of updates that describe current plans to implement that strategy. The TDP is a continuously evolving document, made up of reinforcement projects required in the short, medium and longer-term.

Strategic Environmental Assessment (SEA) is a systematic process of predicting and evaluating the environmental effects of a proposed plan or programme, in order to ensure that these effects are adequately addressed at the earliest stage. In 2011, we prepared and adopted a SEA in respect of the Grid25 Implementation Programme (IP) (2011-2016). The IP outlines how the early stages of Grid25 were to be implemented. A Natura Impact Statement in support of the Appropriate Assessment of the Grid25 IP accompanied the SEA. The purpose of the SEA is to anticipate and avoid, where possible, potential adverse environmental impacts arising from the IP. These documents are available at www.eirgridgroup.com.

The IP and associated SEA have a five year lifespan, with review and drafting processes for the next IP and SEA beginning in the final year. In this regard, the preparation of the next IP and associated SEA has commenced.

An Environmental Appraisal Report has been prepared to ensure that the TDP 2015-2025 is in accordance with the provisions of the Strategic Environmental Objectives as detailed in the SEA for the IP. A summary of the results of this appraisal is presented in

15 The deterministic methodology is often referred to as the N-1 criterion. The system must have sufficient capacity so that in the eventuality of a probable system outage, there are no resulting system problems such as overloading, under-voltage, over-voltage or instability.
Section 7 of this report. This relationship between the grid development strategy, SEA, TDP and environmental appraisal is set out graphically in Figure 2-1.

![Diagram](image)

Figure 2-1 Structure for Grid25 strategy and associated IP, SEA, TDP and associated EAR (extract from our Grid25 IP 2011-2016)

2.3.2 Public Planning Considerations

Statutory consent for transmission projects is sought on a project-by-project basis as required under the Planning and Development Acts 2000 to 2014. At the outset, An Bord
Pleanála (ABP) determines if a proposed development falls within the scope of Section 182A of the Planning and Development Acts 2000 to 2014, which relates to Strategic Infrastructure Development. If it does fall within Section 182A, an application for approval is made directly to the Strategic Infrastructure Division of ABP. If ABP determines that the proposal does not fall within Section 182A, an application for permission must be made to the relevant Local Planning Authority (LPA).

The competent planning authority (ABP or LPA) will determine whether the application for development is in accordance with the principles of proper planning and sustainable development. These considerations include:

- EU directives and governing Statutory and Strategic Policy;
- Conformity with the provisions of key documents such as relevant Development Plans and Regional Planning Guidelines;
- Input from Prescribed Bodies such as the relevant LPA, Department of Communications, Energy & Natural Resources, Department of the Environment, Community & Local Government, and National Parks and Wildlife Service of the Department of Arts, Heritage and the Gaeltacht;
- Requirements to protect designated areas on account of their ecological, cultural, archaeological, visual, or other sensitivity and/or significance.

As part of the Grid25 Initiatives published in January 2014, we conducted a thorough review of our consultation processes to further enhance future public engagement.

The findings of the review, including recommendations to enhance future public engagement, were published in December 2014 and are available at www.eirgridgroup.com. Under Commitment two, Process for Consultation in Project Development, we are preparing a revised project development framework that will replace the Project Development and Consultation roadmap shown in Figure 2-2.
Transmission network projects also comprise uprate, refurbishment and maintenance works. Under the current Planning and Development legislation, such works may comprise exempted development – development which does not require a prior grant of approval or permission. We currently undertake a process to confirm our consideration of the exempted status of such works. This process also involves a Screening for

16 We are currently developing a new project development and consultation roadmap.
Appropriate Assessment (AA), which is a statutory obligation under the European Communities\(^7\) Regulations 2011.

Our Programme Management Office includes experienced professional planning and ecological consultants. These consultants assist in the development of transmission infrastructure projects, and in other aspects of network development, from a planning and environmental perspective.

2.3.3 Environmental Considerations

Where necessary, applications for statutory consent are accompanied by an Environmental Report (ER) or Environmental Impact Statement (EIS). An AA is included to comply with statutory requirements under legislation related to the Environmental Impact Assessment Directive.

Any plan or project not directly connected to a Natura 2000 site (Special Area of Conservation (SAC) or Special Protection Area (SPA)), that is likely to have a significant effect on the site is subject to an AA of its implications on the site.

These requirements are transposed into Irish law in the Planning and Development Acts 2000-2014 and associated Regulations.

Environmental Impact Assessment (EIA)

EIA is the process of examining the environmental effects of projects, from consideration of environmental aspects at design stage, to preparation of a non-statutory ER, through to preparation of an EIS. Projects where an EIS is mandatory are identified in Annex I of the EIA Directive. This includes transmission of electricity by overhead lines where:

- The voltage is 220 kV or more; and
- The cable length is more than 15 km.

An EIS may be required for sub-threshold development where likely significant impacts on the environment are identified by the relevant LPA or ABP.

\(^7\) Birds and Natural Habitats
The content and scope of the EIS is defined by the EIA Directive; however, detail varies between projects depending on local environmental sensitivities.

Appropriate Assessment (AA)

The requirements for AA are set out in Article 6 of the EU Habitats Directive (92/43/EEC), the European Communities (Birds and Natural Habitats) Regulations 2011 and Part XAB of the Planning and Development Act 2000-2014. European Sites include:

- Special Areas of Conservation (SAC) designated under the Habitats Directive;
- Special Protection Areas (SPA) designated under the Birds Directive (2009/147/EEC); and
- Candidate SACs or proposed SPAs, all of which are given the same level of protection as fully adopted sites.

Both the Habitats and Birds Directives have been fully transposed into Irish law. The provisions of Part XAB of the 2000 Act require, among other things, that an AA “shall include a determination by the competent authority under Article 6.3 of the Habitats Directive as to whether or not a proposed development would adversely affect the integrity of a European site.”

The overall AA process is different from EIA as it is only focused on the conservation objectives of European sites. The process is made up of separate stages of assessment, the results of each stage determining the need for the next.

The AA Process

Stage 1: Screening

The purpose of the screening stage is to determine on the basis of a preliminary assessment and objective criteria, whether a plan or project could have significant effects on a Natura 2000 site.

Stage 2: AA

The need for stage two AA arises when the screening process, stage one, has determined that the proposed development (alone or in combination with other plans or projects) is likely to have a significant effect on a European site. It also includes any mitigation measures necessary to avoid, reduce or offset negative effects.
Stage 3: Assessment of alternative solutions
This stage of the process arises where adverse effects on the integrity of a European site cannot be excluded, and examines other ways of achieving the objectives of the project or plan that avoid adverse impacts on the integrity of the European site.

Stage 4: Imperative Reasons of Overriding Public Interest
This is the derogation process of Article 6(4), which examines whether there are Imperative Reasons of Overriding Public Interest for allowing a project to proceed, where adverse effects on the integrity of a European site have been predicted. Compensatory measures must be proposed and assessed as part of this stage and the EU Commission must be informed of the compensatory measures.

2.4 Network Development Planning Process
The network development planning process\(^{18}\) is a dynamic process, as requirements for transmission services are continuously evolving. The TDP is a snapshot in time of the development needs in this process. Figure 2-3 illustrates the various stages of the network development process, which are described below. Figure 2-3 also illustrates the correlation between the phases of the network development process and the stages of the Project Development and Consultation Roadmap shown in Figure 2-2.

2.4.1 Stages in the Network Development Process

Update the Network & User Data: The beginning of the process involves reviewing and updating the network and user information that defines the network model.

Develop Forecasts of Future Conditions: This involves reviewing and making projections of the main drivers as outlined in Section 3. The projections are incorporated into models of the future network.

Evaluate Network Performance: The network models are used to assess the future long-term performance of the network against the standards set out in the TPC.

\(^{18}\) Currently under review within EirGrid
Evaluate Connection Applications: An analysis of shallow connection and associated deep reinforcements is carried out for generation and demand applications that are processed.

Connection Offer Accepted: If the applicant signs the connection agreement the shallow connections are progressed in accordance with contractual milestones, while the deep reinforcement options are considered for optimisation.

Confirm Need for Development: The previous stages provide a list of potential problem areas that may arise in the future. The need for development may also be identified following an assessment of existing asset condition, see section 2.5 Refurbishment Planning Process for further details. In some cases there may not be an immediate need to progress a solution. Therefore, at the appropriate time, a detailed review is carried out on each problem to determine if there is a definite requirement for development.

Consider Options for Development: Once the need is confirmed, a list of potential options will be developed. Each option will be evaluated to ensure it meets the statutory requirements.

Select Optimum Development Project: Where more than one technically feasible option is available, the selection of the optimum project is required. This involves the consideration of many factors including:

- Compliance with the TPC;
- Meeting government and EU objectives;
- Environmental and societal impacts;
- As per the stages defined in section 2.3.3, options are screened to determine the need for an Appropriate Assessment;
- Economics of other development options;
- Project lead-times and feasibility of options;
- The impact of constraints in the transmission network on generation costs;
- Flexibility in scheduling generation to support the operation of an effective market;
- Alignment with the grid development strategy;
- Robustness to accommodate other future needs;
- The impact on transmission operations, protection and maintenance;
- Co-ordination with the Distribution System Operator’s (DSO) requirements;
- The impact of other development plans on distribution costs; and
- Synergy with refurbishment projects, see section 2.5 Refurbishment Planning Process for further details.

The challenge for us is to find robust solutions that deliver the best long-term value to the customer. After careful analysis and review one or more preferred options are put forward to be progressed.
Figure 2-3 Flow Chart of Network Development Process

* An outline of the Stages of our Project Development and Consultation Roadmap is shown here in the Network Development Process Flow Chart to illustrate the correlation between the two. Refer to Figure 2-2 for the details on the Stages in the Roadmap. As discussed in section 2.3.2, we are preparing a revised project development framework that will replace the Project Development and Consultation Roadmap.
Public Consultation: The public are consulted and their input is sought throughout this process. The main goals are improving the efficiency, transparency and public involvement in the proposed project. The process usually involves notification to publicise the matter to be consulted on. Consultation involves a two-way flow of information and opinion exchange as well as participation.

Preliminary Design, EIS and Preparation of Planning Applications: This phase includes a number of tasks: preparation of preliminary designs; site selection; route surveys; and meetings with stakeholders (landowners, local representative bodies and the general public).

For developments that require planning permission this stage includes a number of additional tasks: preparation of planning applications to the relevant statutory authorities and preparation of an EIS, which is required to comply with environmental legislation.

Public Planning: The Strategic Infrastructure Act 2006\(^\text{19}\) introduced a new strategic consent process for major infrastructure of national and public importance. Persons seeking permission for electricity transmission infrastructure (110 kV and greater) apply directly to ABP for approval of the scheme. The public, the Local Authority (including the elected members) and interested stakeholders are consulted to be given an opportunity to provide input to the application process and their views taken into account.

Some projects do not comprise strategic infrastructure, and an application will be lodged with the relevant planning authority. The planning authority decides whether or not to grant planning permission for the project. If planning permission is granted it may subsequently be appealed to ABP, subject to the appellant(s) having lodged an objection to the planning application with the relevant LPA in the first instance.

Once planning permission is secured by either of the above processes, the requirement for the project is reviewed and the project cost is re-evaluated before progressing to the next phase.

Project Agreement (PA) with ESB Networks: Under the Infrastructure Agreement (IA), we conclude a PA with ESB Networks for detailed design and construction of each committed project. PA contains a project description, the outline design and functional specification, and a description of the methods by which the project will be realised within the agreed timescale and budget.

The next three stages are undertaken by ESB Networks; we have a project management and client engineering role throughout the IA phase and through to project close out.

Detailed Design and Purchase: When statutory consents are secured, where necessary, and internal approval is obtained to proceed to construction; the materials are procured; station sites are finalised where necessary; and construction arrangements put in place.

Construction Phase: Once the detailed design and purchase are completed, construction is carried out.

Commissioning and Completion: When the development is constructed it must undergo commissioning, testing and approval before going into operation. This is to ensure that equipment is safe, will operate as per design and that signals and controls are correctly installed.

Review Need and Scope: The process is presented above in a sequential format for explanatory purposes. It is in fact a dynamic process; there are opportunities at various stages for a review and possible change of the project scope.

For example, the process includes a review following the planning process when more accurate project costs based on an actual route are obtained. If, for example, these turn out to be significantly higher than estimated, the project justification and selection would be reviewed. If planning permission is not granted, or if there are other mitigating circumstances then it would be necessary to reassess the project. The process allows investments to be optimised and ensures that the network development plan matches network reinforcement requirements as closely as possible.

Timescales: The delivery of projects, ranging from local station works to the provision of a new circuit, through the network development process described above typically takes between 3-10 years.
These timescales are required to ensure that all the aspects of the project can be thoroughly considered, consideration of stakeholder input, consultation opportunities, the public planning process, review of project need and scope, detailed design and finally the time required to construct the project.

2.5 Refurbishment Planning Process

Asset refurbishment is work specifically undertaken to restore the condition of assets in the cases where:

- Routine maintenance by itself is unable to do so; and
- The early replacement of the asset is not the least cost option.

Refurbishment projects are designed to provide additional non-routine maintenance on assets where the condition is below acceptable standards. Refurbishment works may consist of a major overhaul of equipment, to rebuild or replace parts or components of an asset to restore it to a required functional condition and extend its life.

For some equipment, replacement or uprating rather than refurbishment may be the most appropriate and optimised long term decision when all factors are considered. Examples of such factors include:

- safety and environmental considerations;
- age;
- increasing fault frequency;
- increasing cost and complexity of maintenance;
- lack of spares;
- plant obsolescence; and
- forecast conditions.

Where action is required on the basis of condition, age or reliability it is referred to as a refurbishment project for simplicity, regardless of whether replacement or refurbishment is chosen.
The process of network refurbishment is illustrated in Figure 2-5 with each of the steps described below. The main inputs into the process are represented by the two blocks titled “Initial Condition Assessment” and “Performance and Technology Review”.

Initial Condition Assessment: The transmission maintenance policy combines preventative maintenance (interval based) and condition based maintenance. A refurbishment programme may be considered when signs of deterioration are identified which would otherwise require costly, special or excessive amounts of maintenance to rectify.

Performance and Technology Review: The performance reviews are undertaken on an on-going basis. The results are used to identify if a particular asset or a family of equipment type is not performing as well as expected. Technology reviews determine if:

- any of the installed equipment is obsolete; or
- if it is still adequate to provide the necessary performance and able to interact with the rest of the network.

Identify Plant for Detailed Assessment: Input from the first two activities result in the creation of a list of plant requiring a detailed assessment of their condition.
Equipment Needed: Before embarking on a detailed assessment program the continued need for the equipment is established.

De-commission: If the equipment is no longer required, it may be permanently isolated from the network and/or removed completely.

Detailed Condition Assessment: A detailed condition assessment is carried out on assets that are showing increased signs of deterioration and/or a notable reduction in performance. The detailed assessment of the condition of the relevant asset or plant will identify which individual components of the asset, if any, need to be replaced.

The condition assessment report will also give a best estimate of the remaining useful life of the existing equipment based on set criteria (history of issues, reliability, maintainability and age of the asset). In the case of overhead lines, a Line Condition Assessment (LCA) and subsequently a Line Project Assessment Report (LPAR) are carried out to identify the individual components of the asset which require refurbishment. For example:

- the replacement of individual pole-sets, insulators and hardware at selected locations; and
- the replacement or strengthening of selected angle tower foundations.

In the case of stations, a Station Condition Assessment report will identify the requirement for the replacement of selected items of high voltage plant. Such items include: circuit breakers, disconnects, instrument transformers, protection and control equipment, and vintage civil works.

Analysis of Options and Consider Reinforcement Synergies: Based on the detailed condition assessment report, the economic merits of a full replacement project versus a refurbishment project will then be considered. Feasibility analysis is carried out to investigate the merits of refurbishment versus replacement. This analysis includes consideration of potential planning permission requirements as this can have a significant effect on project costs and lead-times. As per the stages defined in section 2.3.3, options are screened to determine the need for an Appropriate Assessment. Options could include for example; the like-for-like replacement of old switchgear; or
the use of more modern switchgear; or the construction of a new station to replace the old one.

Following the analysis, a decision is made to resolve the problem either through a refurbishment or a replacement project. The “do nothing option” is also considered which generally means the asset will remain in service and may require more extensive monitoring and maintenance activities.

Having identified the refurbishment options, we then carry out analysis to determine if synergies exist between the refurbishment and potential reinforcement projects. In the case of overhead line projects for example, the refurbishment project may provide the opportunity to uprate the line to meet future power flow requirements.

The decision is based on an economic appraisal. This compares the option of uprating the line early during the refurbishment works with the option of uprating later as a stand-alone project. Likewise in station refurbishment projects, the opportunity may be taken to uprate busbars and switchgear or upgrade protection equipment or reconfigure the busbar, if economic to do so.

Resolve through Maintenance: Increased monitoring and maintenance of the existing assets may be the optimal decision to ensure the asset lives out its expected lifecycle. If this is the case and it is the most cost effective option, maintenance can normally be carried out and the asset returned to service relatively quickly.

Select Replacement Option: The chosen option is determined by factors such as cost, economic trade-off, remaining useful life of the asset, environmental considerations, system safety, security and reliability. A high level scope of work for the selected option is developed and an estimated cost prepared.

EirGrid Approval of Expenditure: The final scope or works with estimated costs for the refurbishment project is submitted for internal approval.

Project Agreement (PA) with ESB Networks: Under the Infrastructure Agreement (IA), we conclude a PA with ESB Networks for detailed design and construction of each committed project. PA contains a project description, the outline design and functional
specification, and a description of the methods by which the project will be realised within the agreed timescale and budget.

The next stage is undertaken by ESB Networks. We have a project management and client engineering role throughout the IA phase and through to project close out.

ESB Networks Refurbishes Plant: Following PA, ESB Networks carries out the refurbishment works in timelines agreed by EirGrid and ESB Networks. Our client engineering role ensures the assets are refurbished in line with our requirements during this phase of the project.
3 INVESTMENT NEEDS

3.1 Strategic Context of Transmission Network Investment

The ability to provide all customers with a secure, efficient, reliable and stable electricity supply is essential for Irish society and to enabling economic activity and economic growth.

The Irish electricity industry and its development take direction from a number of broad national and European strategic objectives. These objectives guide investment in the Irish transmission network and are summarised as follows:

- Ensuring the security of electricity supply;
- Ensuring the competitiveness of the national economy; and
- Ensuring the long-term sustainability of electricity supply in the country.

To ensure these objectives are met we must provide on-going and timely reinforcement of the Irish transmission network.

As the TSO for Ireland, we have a statutory duty to support the development of the Irish economy and society by ensuring the transmission network is able to support all reasonable demands for electricity. In addition, we are required to enter into agreement for connection with parties seeking to connect to the network under such terms approved by the CER.

Changes to demand, generation, or to interconnection with neighbouring transmission networks may alter the flow of electrical power throughout the Irish transmission network. To accommodate these changes in power flows it is often necessary to reinforce the transmission network to ensure adequate performance and reliability levels are maintained.

National and EU policies are the basis of our grid development strategy. Figure 3-1 below outlines how national and EU policies and network investment drivers relate to the resultant needs and projects in this TDP.
Figure 3-2 Summary of how Policy, Drivers, Needs and Projects relate to each other
3.2 National and EU Energy Policy

3.2.1 Security of Supply

Security of supply deals with generation adequacy and the availability of generation to meet the fluctuating demand needs over time. Hence, electricity policy seeks to promote broadening the country’s access to generation and promotes further interconnections with neighbouring countries.

Security of supply is also concerned with the reliability and security of the transmission network. Policy therefore also seeks to promote the timely development of the transmission network to maintain an acceptable level of performance and reliability.

3.2.2 Competitiveness

Low or competitively priced electricity is viewed as the product of a competitive electricity market. As a result, electricity policy generally seeks to promote increased competition. This is achieved through further market integration, by removing network constraints and broadening the market by interconnecting to neighbouring electricity markets.

3.2.3 Sustainability

Ireland is heavily reliant on imported fossil fuels for the generation of electricity. The long-term sustainability of the Irish economy is impacted by the sustainability of the fossil fuels upon which it relies. Furthermore, the production of greenhouse gases as a result of the burning of fossil fuels has a long-term environmental impact and is not environmentally sustainable. Electricity policy therefore attempts to address these two factors and drives the integration of energy produced from renewable energy sources (RES).

3.3 Policy Drivers of Transmission Network Investment

In order to achieve the identified strategic objectives laid out by national and EU policies, we must continue to invest in the development and maintenance of the electricity transmission network. Specific drivers of investment in transmission network infrastructure are therefore identified, and are described as:
3.3.1 Security of Transmission Network

Security of supply generally addresses two separate issues:

- The availability of primary energy resources to generate sufficient electricity to meet demand; and
- The ability of the transmission network to reliably transport electrical energy from the generators, where it is generated, to the demand centres, where it is consumed.

The TDP is aimed at addressing the security of supply issues that relate to the transmission network.

Therefore, for this document, security of supply means the ability of the transmission network to reliably and securely transport electrical energy from where it is generated to the demand centres where it is consumed.

3.3.2 Market Integration

With increased market integration, electrical power flows from areas where it is cheap to produce to areas where it is more highly valued are facilitated. Therefore, the aim is to make the EU electricity markets more integrated.

The integration of RES and other forms of low carbon generation significantly increases the power exchange opportunities across the region. Differences in national targets combined with varying availabilities of renewable sources across Europe will lead to greater penetration of RES in certain areas compared to others. Therefore, there is a need to reinforce the transmission networks between and within the countries.

3.3.3 Renewable Energy Sources (RES) Integration

Developing renewable energy is an integral part of Ireland’s sustainable energy objectives and climate change strategy. In comparison to fossil fuels, RES has lower or no net emissions when compared to fossil fuels. RES contribute to the decarbonisation of the energy supply and reduction in greenhouse gases emissions. They also contribute to energy security, being, for the most part, an indigenous energy source. In a period of volatile energy costs RES can also
contribute to cost competitiveness by reducing dependence on imported fossil fuels.

In order to fulfil both European and national renewable targets, many RES-related projects are expected to be initiated throughout the period of this TDP. Many of these projects are located in rural areas where the transmission network is less developed. This places pressure on the electricity transmission network in these rural areas. Significant challenges will arise in extending and reinforcing the network to connect new RES.

3.4 Technical Drivers for Transmission Network Investment

Technical drivers of transmission network investment include changes in demand, generation and interconnection, inter-regional power flows and changes in asset conditions.

3.4.1 Demand, Generation and Interconnection

Changes in Demand and Generation

Demand growth and the connection of new demand can give rise to higher power flows which may trigger the need to reinforce the network as a result. Closure or reduction in the size of demand facilities can reduce the power flows on lines feeding the load. However, in certain cases where the demand is absorbing local generation and reducing the amount of generation exported from the area, the closure can lead to increased power flows.

Our All-Island Generation Capacity Statement 2015 (GCS)\(^{20}\), available at www.eirgridgroup.com, details the forecast of electricity demand for the years 2015 to 2024\(^{21}\). The forecast of median transmission system peak demand published in the GCS 2015 corresponds to the peak demands in Table 3-1 below.

\(^{20}\) It is important to note that the information in the GCS 2015 is based on the best information available at the freeze date, October 2014.

\(^{21}\) In the table below the 2025 forecasts are extrapolated from the 2024 forecasts.
<table>
<thead>
<tr>
<th>Year</th>
<th>Demand (MW)</th>
<th>Generation (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak Demand</td>
<td>Dispatchable22</td>
</tr>
<tr>
<td>2015</td>
<td>4,831</td>
<td>7,487</td>
</tr>
<tr>
<td>2016</td>
<td>4,856</td>
<td>7,494</td>
</tr>
<tr>
<td>2017</td>
<td>4,881</td>
<td>7,569</td>
</tr>
<tr>
<td>2018</td>
<td>4,898</td>
<td>7,674</td>
</tr>
<tr>
<td>2019</td>
<td>4,919</td>
<td>7,683</td>
</tr>
<tr>
<td>2020</td>
<td>4,939</td>
<td>7,679</td>
</tr>
<tr>
<td>2021</td>
<td>4,959</td>
<td>7,682</td>
</tr>
<tr>
<td>2022</td>
<td>4,999</td>
<td>7,679</td>
</tr>
<tr>
<td>2023</td>
<td>5,045</td>
<td>7,086</td>
</tr>
<tr>
<td>2024</td>
<td>5,093</td>
<td>7,083</td>
</tr>
<tr>
<td>2025</td>
<td>5,143</td>
<td>7,081</td>
</tr>
</tbody>
</table>

Table 3-1 Forecast Demand and Generation growth over the period 2015 to 202523

Our All-Island Ten Year Transmission Forecast Statement 2014 (TYTFS)24, available at www.eirgridgroup.com, includes information on how the GCS demand forecast relates to each individual demand centre node over the period covered by this TDP. Areas in the transmission network where changes in demand are resulting in network development needs are highlighted on the map in Figure 3-1.

22 These figures include EWIC as a 500 MW generation source. EWIC can be either a generation or demand source.
23 This forecast is based on information presented in GCS 2015. The generation figure assumes that not all contracted generation will be commissioned, and some older plants in Ireland will, in effect, shut down over the course of the Plan. In addition to the generation figures above there exists further contracted generation and generation in the applications queue.
24 It is important to note that the information in the TYTFS 2014 is based on the best information available at the freeze date, October 2013.
Because of the relative size of individual generators, changes in generation installations, whether new additions or closures can have a more significant impact on power flows than demand. This is equally so in the case of interconnectors which are treated as generators during periods when power is imported.

The addition of new generation capacity requires network development to connect the new generator to the network. This provides a path for the power from the new generator. This is known as the shallow connection. The new generation capacity will inevitably alter the power flows across the network, which has the potential to create overload problems deep into the network. To resolve these overloads we need further reinforcements (known as deep reinforcements) to allow full network access.

The connection of large generators, or groups of generators, combined with the increasingly meshed nature of the transmission network results in lower network impedance and consequently increased short circuit levels. Under fault conditions such high short circuit levels may cause catastrophic failure of high voltage equipment and so are a safety issue. We monitor fault levels on the network and take measures to prevent these conditions occurring. The areas where the network is close to the fault rating of installed equipment are highlighted on the map in Figure 3-1.

Table 3-1 above highlights the level of existing generation and projected levels of generation expected to connect over the period of this TDP, as detailed in the GCS 2015. It is important to note that there is additional generation contracted to connect to the system as well as generation in the applications queue.

The projected increased levels of generation are accommodated by the reinforcements included in this TDP. This includes the identified future potential projects discussed in chapter 6. The map in Figure 3-1 highlights areas in the transmission network where changes in generation result in network development needs.
Changes in Interconnection

One of the main reasons for the construction of interconnectors is economics. Increased interconnection between transmission networks results in a larger energy market. This is because with increased market integration there is greater competition and the potential for prices to be reduced.

With increased interconnection there is access to a broader generation base, which enhances the networks security of supply. This can potentially defer the need for additional generation to be constructed to meet security of supply standards or requirements.

The following interconnections are addressed in this TDP:

- North-South Interconnector between Ireland and Northern Ireland;
- A possible interconnector between Ireland and France; and
- Possible further interconnection, by third parties, between Ireland and Great Britain.

3.4.2 Changes in Inter-Regional Power Flows

The following factors have the potential to significantly change the flow of electrical power throughout the transmission network. They can drive the need for network reinforcements over the next ten years and beyond:

- Changes in demand;
- Further internal integration of the All-Island Single Electricity Market;
- Further integration with neighbouring countries; and
- Integration of significant levels of new generation (both conventional and renewable).

There is now a growing need to accommodate a much broader range of plausible, credible flow patterns across the network. This is due to the extent of the likely
changes that are envisaged for Ireland, particularly in respect of the RES targets25. To cater for a broader range of flow patterns, greater transmission network flexibility is required.

In the Irish context, the following inter-regional power flows are defined:

- South → West power flow;
- South → East power flow;
- North-West → East power flow; and
- West → South power flow.

3.4.3 Changes in Asset Condition

Transmission network assets have a finite lifespan. The useful life of transmission assets are impacted by a number of factors. These include:

- the age of the asset;
- technology type and its propensity for obsolescence;
- maintenance adequacy and effectiveness;
- environmental conditions; and
- utilisation.

In order to ensure that security of supply is not compromised, routine condition assessments are carried out. These assess the condition of the assets and estimate remaining useful life.

Typically, where asset condition is poor, assets are:

- Refurbished;
- Replaced on a like-for-like basis; or
- Replaced with higher rated equipment to cater for future needs.

3.5 Network Development Needs

The technical drivers of transmission network investment listed above, result in network development needs. To address these needs, we must provide on-going and timely reinforcement of the Irish electricity transmission network.

The primary measure of network development needs is assessed by comparing transmission network performance with the required performance levels set out in the Transmission Planning Criteria (TPC).

Our TSO licence, granted by the CER, specifically requires us to ensure the maintenance of and, if necessary, develop the transmission network in accordance with the TPC²⁶.

It is possible to separate the resulting reinforcement needs into a number of categories, namely:

- Reinforcements required to provide connections or changes in demand or generation;
- Reinforcements required to address local network constraints such as a shortage of transmission capacity or voltage support;
- Reinforcements related to providing and facilitating interconnection capacity;
- Reinforcements to facilitate inter-regional/area power flows; and
- Reinforcements to address the condition of existing assets.

Figure 3-1 illustrates the areas of change on the network and the resultant network development needs over the period of this plan.

²⁶ Referred to as the Transmission System Security and Planning Standards in the TSO Licence, CER, CER/06/123, 29 June 2006
Figure 3-1 Network Map Showing Areas of Change Driving Network Development
4 CHANGES TO THE PLAN SINCE 2013

TDP 2013 is available on www.eirgridgroup.com. TDP 2013 had a data freeze date of 31 March 2013.

TDP 2015 has a data freeze date of 31 March 2015. The changes that have occurred since 31 March 2013 are summarised in Table 4-1 below.

<table>
<thead>
<tr>
<th>Description of Projects</th>
<th>No. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active projects in TDP 2013</td>
<td>133</td>
</tr>
<tr>
<td>New projects introduced since TDP 2013</td>
<td>(+)47*</td>
</tr>
<tr>
<td>Projects completed since TDP 2013</td>
<td>(-)50**</td>
</tr>
<tr>
<td>Active TDP 2013 projects cancelled</td>
<td>(-)1</td>
</tr>
<tr>
<td>Active TDP 2013 projects put on hold</td>
<td>(-)4</td>
</tr>
<tr>
<td>Total Active Projects in TDP 2015</td>
<td>125</td>
</tr>
</tbody>
</table>

* This figure includes 5 new projects that have already been completed. However, it does not include 1 new project that has since been put on hold nor 2 projects whose energisation dates have yet to be confirmed by the customer.

** This figure is made up of 45 TDP 2013 projects and 5 new projects.

Table 4-1: Summary of Changes since TDP 2013

Table 4-1 shows the number of projects that have been completed (50 projects), cancelled (1 project), put on hold (4 projects) and new projects introduced (47 projects) since TDP 2013. These projects are listed in Appendices B and C.

In addition, Appendix B also lists projects whose expected energisation dates have yet to be confirmed by the customer.
5 PLANNED NETWORK DEVELOPMENTS

5.1 Overview of the Plan

This chapter summarises the network development projects that are a result of the transmission network development planning process (outlined in Section 2.4). Projects are described in greater detail in Chapter 6 and Appendix C.

The TDP includes a total of 125 projects that are currently in progress. These projects are categorised as either New Build, Uprate/Modify or Refurbish/Replace related projects.

New Build projects: are projects that involve the construction of new stations or new circuits. This category also includes projects that involve the installation of new equipment in existing stations.

An example of a new build project is the installation of new transformers or new reactive support devices within existing stations.

Uprate/Modify projects: are projects that involve the uprating of existing assets. An example of an uprate project is changing equipment to increase the capacity rating of circuits or busbars.

This category also includes projects that involve the modification of existing assets.

An example of a modification project is the installation of new couplers or new bays in existing stations. Reconfiguration of existing stations is also included in this category.

Refurbish/Replace projects: are projects that involve the maintenance of existing stations or existing circuits. This category also includes projects that involve the replacement of existing assets. For example, the replacement of stations at or close to the end of their useful life or replacement and upgrading of protection in existing stations.

Table 5-1 below summarises the active 125 projects into their respective categories.
Table 5-1 Summary of Projects by Category

<table>
<thead>
<tr>
<th>Project Category</th>
<th>No of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>32</td>
</tr>
<tr>
<td>Uprate/ Modify</td>
<td>63</td>
</tr>
<tr>
<td>Refurbish/ Replace</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
</tr>
</tbody>
</table>

Table 5-1 Summary of Projects by Category

5.2 Summary of Phase of Projects

Table 5-2 below summarises the number of projects in phase 2 and 3 of network development.

Phase 2 involves outline design, EIA, public consultation, the public planning process and the IA process up to PA with ESB Networks.

Phase 3 involves detailed design, procurement, construction, commissioning and energisation.

<table>
<thead>
<tr>
<th>No of Projects in Each Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 2</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

Table 5-2 No. of Projects in each Phase of Development

There are currently 60 projects in Phase 2 of project development and 65 projects in Phase 3.

Figure 5-1 illustrates the location of the larger network development projects in Phase 3, while Figure 5-2 shows those in Phase 2. All new developments shown in Figure 5-2 are subject to existing/on-going EIA.

27 The process of network development is described in section 2.4
For those projects not yet in the planning process, the lines shown on the map are indicative only and do not represent a preferred line route\(^28\). A full list of projects and their corresponding phase of development is given in Appendix C.

In addition to the projects summarised in this chapter, we also co-ordinate capital projects which are classified as minor capital works with the TAO, such as line diversions and alterations. These projects are numerous and generally deal with the day-to-day operation and maintenance of the network. These are not included in this chapter nor itemised in Appendix C.

\(^{28}\) Similarly line lengths for these projects are only indicative and estimates at this time.
Transmission System: 400 kV, 275 kV, 220 kV and 110 kV
Indicating Developments in Phase 3 (i.e. Detailed Design & Construction) as at March 2015

Figure 5-1 Planned Network Developments in Phase 3
Transmission Development Plan 2015-2025
Figure 5.2 Planned Network Developments in Phase 2
5.3 Project Delivery

The development of the transmission network is subject to delivery risk. We use risk management plans and processes to identify, analyse, monitor and manage project and programme risks. These plans and processes facilitate the management of project dependencies and critical path issues within the context of a changing environment.

Project Estimated Completion Dates (ECDs) in the TDP are forecasts based on the best project information available at the time of the data freeze, 31 March 2015. Certainty with regard to completion dates increases as a project moves through the various phases in its lifecycle, as represented below in Figure 5-3.

The project schedule at the concept stage is developed based on standard lead times for generic project types. As a project moves forward from the concept phase a detailed schedule is developed, milestones are achieved and there is therefore greater certainty regarding the completion date.

![Figure 5-3 Relationship between Phases in Project Lifecycle and Completion Date Certainty](image)

The level of certainty or risk in a project also varies by project type as shown in Figure 5-4.

![Figure 5-4 Project Certainty Depending on Project Type](image)
We differentiate between moderate and high risk projects based on project type and project phase. Thus, line and station busbar uprate projects which are due to be completed by 2016 are considered to be within the moderate risk category. Large scale linear developments, scheduled to be completed post 2017 have a higher level of risk. Projects that are due for completion in the near-term generally carry less risk than those due for completion in later years.

The region or location of a project also has an impact on its risk profile. When interdependent projects are on-going at the same time, care has to be taken scheduling the required outages. In this case we will prioritise projects according to our prioritisation processes. This programme risk review may drive changes to the way projects are sequenced and the timing of project delivery in a region.

For example, there is a large programme of works scheduled in the west region between 2015 and 2020. This programme includes outage intensive line and busbar uprating projects for which planning permission may or may not be required.

We review the network development programme on an on-going basis, which may result in project delivery changes for the reasons cited above. In such cases we endeavour to communicate with and mitigate impacts on customers.

In summary, completion dates are subject to change and the level of change typically depends on:

- The type of project;
- Phase-specific project and programme risks; and
- The region a project is in.
6 REGIONAL PERSPECTIVE OF THE PLAN

6.1 Overview

As described in Chapter 1, planned projects are categorised on a planning area basis as per the following map.

Figure 6-1 Illustration of the Three Planning Areas and the underlying Statutory Regions
Table 6-1 below summarises the number of active projects by planning area with the more detailed project data listed in Appendix C.

<table>
<thead>
<tr>
<th>Planning Area</th>
<th>No. of Active Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Border, Midlands & West (B-M-W)</td>
<td>38^{30}</td>
</tr>
<tr>
<td>South-West & Mid-West (SW-MW)</td>
<td>39^{31}</td>
</tr>
<tr>
<td>South-East, Mid-East & Dublin (SE-ME-D)</td>
<td>38^{32}</td>
</tr>
<tr>
<td>National Projects^{33}</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
</tr>
</tbody>
</table>

Table 6-1 Summary of Active Projects by Planning Area

There are eight individual projects that are in, or have the potential to be in, multiple planning areas. These eight projects are listed in Table C-1 in Appendix C.

Projects of European Significance in, or partly in, Ireland are identified in ENTSO-E’s most recent TYNDP and RégIP documents that cover the period 2014 to 2024. These projects are identified in this TDP using the following labels: “TYNDP/ TYNDP_Project_No” or “RégIP/ RégIP_Project_No” and are listed in Appendix D.

^{29} Prior to reviewing Appendix C consult Appendix A Project Details which explains some of the terms that are used to describe projects.

^{30} Includes 2 projects that are in, or have the potential to be in, multiple planning areas.

^{31} Includes 1 project that is in, or has the potential to be in, multiple planning areas.

^{32} Includes 5 projects that are in, or have the potential to be in, multiple planning areas.

^{33} These involve multiple individual projects at various locations across the country.

^{34} Please note that the routes for projects in Phase 2 have yet to be determined thus the planning areas these projects are in also has yet to be determined.
6.2 The Border, Midlands & West Planning Area

The Border, Midlands & West Planning Area Overview

The Border, Midlands and West planning area is made up of the following counties categorised by statutory regions:

- The Border: Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth
- The Midlands: Longford, Westmeath, Offaly and Laois
- The West: Mayo, Galway and Roscommon

2025 Forecast Regional Generation and Demand Balance

<table>
<thead>
<tr>
<th>Region</th>
<th>Generation</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3079 MW</td>
<td>1227 MW</td>
</tr>
</tbody>
</table>

Summary of TDP Projects

<table>
<thead>
<tr>
<th>TDP project category</th>
<th>No. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>10</td>
</tr>
<tr>
<td>Uprate/ Modify</td>
<td>26</td>
</tr>
<tr>
<td>Refurbish/ Replace</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
</tr>
</tbody>
</table>

Regional Description

The Forecast Regional Generation and Demand Balance is based on Generation and Demand levels published in GCS 2015, and uses the nodal split at individual transmission interface stations published in the TYTFS 2014.
The Border, Midlands and West planning area has a wide variety of generation sources. These are dispersed around the planning area and include wind; hydro; gas; and peat burning power stations.

The planning area has considerably more generation than demand. The existing transmission network is predominantly 110 kV and 220 kV. There is limited high capacity 400 kV infrastructure in the southern part of the planning area. The existing local transmission network allows limited power flows between Northern Ireland and Ireland via the existing 275 kV Tandragee-Louth interconnector.

There is an 110 kV transmission network in the area which supplies a relatively low local demand. Development of this network is mainly to connect a high level of wind generation.

This excess of generation in the area is set to increase significantly in the coming years. This is due to generators that currently have connection agreements and live connection offers connecting to the transmission and distribution networks.

To cater for the high levels of generation described above, network reinforcement is necessary. This will enable the efficient export of generation from this area to areas with high load, such as the eastern seaboard.

There are also reinforcement needs due to:

- Local constraints related to a shortage of transmission capacity and voltage support;
- Asset condition; and
- To accommodate further market integration with Northern Ireland.

The projects described in this section will enable the transmission network to safely accommodate the more diverse power flows which are a result of excess regional generation. They will also provide benefits to existing and future users of the transmission network in the planning area and facilitate broad future regional load growth.
The 37 projects in the Border, Midlands and West planning area are discussed in more detail below. The status of the network development projects is noted in Appendix C.

Please refer to Figures 5.1 and 5.2 for locational information of planned Network Developments in the Border, Midlands, and West Planning Area in Phases 2 & 3.

Reinforcement of the Transmission Network between Ireland and Northern Ireland

Project

- North-South Interconnection Development (CPo466) (TYNDP/ 81.462, PCI/2.13.1) – 400 kV Circuit from Woodland Transmission Station in Co. Meath to Turleean Transmission Station in Northern Ireland

Description

The drivers for this project are market integration, security of supply and RES integration. There is a requirement for increased power to flow between Ireland and Northern Ireland. This is mainly driven by changes to the all-island generation portfolio, plant retirements and the relative operational costs of generation plants in each jurisdiction.

The capacity for power flows between Ireland and Northern Ireland is limited by the existing infrastructure. In particular, there is a risk that a single event could take the existing 275 kV interconnector out of service. This would lead to a system separation of Ireland and Northern Ireland, requiring each system to instantly adjust to achieve a new demand-supply balance.

The North South Interconnector Project will remove this risk of system separation and significantly increase cross-border transmission capacity. The North South Interconnector Project will offer significant economic benefits, by:

- Improving security of supply by allowing sharing of generation across the island and removing the scenario where a single event could lead to system separation of Ireland and Northern Ireland;

36 More information is available at www.eirgridgroup.com.
• Improving competition and economic operation by removing constraints;
• Providing the required flexibility for renewable generation; and
• Ensuring security of supply for the North East of Ireland.
This is a joint EirGrid and SONI project.

Reinforcement of the Transmission Network in and out of Donegal

Project
- The North West Project (CPo800) (TYNDP/ 82.463, PCI/ 2.13.2) – Reinforcement from Srananagh to South Donegal

Description
In association with SONI we carried out an assessment of north-west Ireland and western Northern Ireland. This investigation resulted in a submission to the European Commission (EC) requesting Project of Common Interest (PCI) status for a project titled the Renewable Integration Development Project (RIDP). The EC has since accepted that application.

The North West Project comprises one of the elements of the RIDP scheme. It was submitted to the EC as a 220 kV circuit from Srananagh 220 kV substation to a new 220 kV substation in south Donegal. However, in line with our draft grid development strategy, that is currently under development, all practical technology options will be considered.

The driver of this project is RES integration.

The amount of renewable generation seeking to connect in Donegal is in excess of the local demand. This generation therefore needs to be transferred out of the area to relieve congestion on the 110 kV network.

Reinforcement of the Transmission Network in the Border, Midlands and West Planning Area for New Generation Connections

Projects

- The Grid West Project (CP0721) (RegIP/ 115[^39]) – High Capacity Circuit from Bellacorick area to Flagford Transmission Station[^39]
- West Galway, Uggool/ Seacon 110 kV Stations – New Stations, new Wind Farm Connections (CP0737)[^40]
- Clogher and Mulreavy 110 kV Stations – New Stations, new Wind Farm Connection (CP0603)
- Sliabh Bawn 110 kV Station – New Station, new Wind Farm Connection (CP0861)
- Derryiron 110 kV Station – New 110 kV DSO Transformer Bay (CP0836)
- Tawnaghmore 110 kV Station – Mayo Renewable Power Connection (CP0833)
- Bellacorick 110 kV Station – Uprate DSO Transformer (CP0837)
- Binbane 110 kV Station – New 110 kV DSO Transformer Bay (CP0878)
- Letterkenny 110 kV Station – New 110 kV DSO Transformer Bay (CP0879)
- Oweninney 110 kV Station – New Station, new Wind Farm Connection (CP0850)
- Glenree 110 kV Station – New 110 kV DSO Transformer Bay (CP0882)
- Dalton 110 kV Station – New 110 kV DSO Transformer Bay (CP0838)

Description

The driver for these projects is RES integration. The need for reinforcement arises due to the requirement to connect new generation.

There is a large amount of renewable generation seeking to connect in the northwest of Mayo. This level of generation is greater than the capacity of the local 110 kV network, even when uprated.

This generated power needs to be transferred out of the area via a new high capacity circuit, the Grid West Project. This new circuit will also provide long-term

[^38]: Formerly part of TYNDP Project No. 82.
[^40]: More information is available at www.eirgridgroup.com.
capacity benefits. The Grid West Project will compliment reinforcement of the existing transmission network in county Mayo and Sligo.

A number of technical solutions for this circuit have been considered. In 2014, we conducted a comprehensive analysis on both underground and overhead solutions for the Grid West Project. A report on this analysis was submitted to the Government appointed Independent Expert Panel for their review.

The report considers three options:

- a HVDC underground cable;
- a 400 kV overhead line; and
- a 220 kV overhead line which may incorporate sections of underground AC cable.

The report was published in July 2015.

Reinforcement of the Transmission Network in the Border, Midlands and West Planning Area for New and Modified Demand Connections

Projects

- Bracklone 110 kV Station – New Station, New DSO Demand Connection (CP0644)
- Portlaoise 110 kV Station – 2 New 110 kV Bays for DSO Transformers (CP0645)
- Castlebar 110 kV Station – Uprate 110 kV Bay for DSO Transformer (CP0680)
- Cloon 110 kV Station – New 110 kV Bay for DSO Transformer (CP0706)
- Letterkenny 110 kV Station – Relocation of 110 kV Bay & 2 New Couplers (CP0740)

Description

The driver for these projects is security of supply.

The need for reinforcement arises due to the requirement for new and modified demand connections. These projects are the shallow connections for a number of DSO demand connections.
Reinforcement of the Transmission Network in North Connaught

Project

- North Connaught 110 kV Reinforcement Project (CPo816)

Description

The driver for this project is RES integration.

The generation contracted to connect in the area could overload the existing infrastructure, under both intact network and single contingency conditions. Without reinforcement the local network would be heavily constrained.

Studies have also indicated violations of voltage limits in the area under single contingency conditions.

This project is currently on hold while the drivers are being confirmed, and to ensure the project is progressed in line with our draft grid development strategy. This strategy is currently under development and will ensure all practical technology options will be investigated.

Reinforcement of the Transmission Network in Mayo and Sligo

Projects

- Castlebar 110 kV Station – Busbar Uprate, New Coupler & Refurbishment Works (CPo771)
- Moy 110 kV Station – Busbar Uprate, New Coupler & Refurbishment Works (CPo839)
- Cunghill - Sligo 110 kV Line Uprate (CPo736)
- Bellacorick - Castlebar 110 kV Line Uprate (CPo731)
- Bellacorick - Moy 110 kV Line Uprate (CPo819)

Description

The drivers for these projects are RES integration and security of supply.

41 A potential solution involves a new 110 kV circuit between Castlebar and Moy 110 kV stations.

The need for these reinforcements arises due to a shortage of transmission capacity. The existing infrastructure could overload under single contingency and maintenance-trip conditions. This overload could occur primarily as a result of the planned connection of new generation.

In addition, the projects also involve refurbishment works due to the condition of the assets. Refurbishment works will be carried out at the same time as the uprating works.

New couplers will be installed in Castlebar and Moy 110 kV stations. These works will improve security of supply and increase operational flexibility. This is something which is of particular relevance during the outage season, which is when maintenance and construction works are scheduled.

These projects are part of an overall strategy, in conjunction with the Grid West Project mentioned above. This strategy aims to increase the capacity for the potentially large power flows out of Mayo to other areas at times of excess local generation.

Reinforcement of the Transmission Network in the Cavan area

Project

- Arva - Shankill No.1 110 kV Line Uprate (CPo847)

Description

The drivers for this project are RES integration and security of supply.

There are two areas of need for the project:

- The need for network reinforcement; and
- The need for refurbishment and replacement works due to the condition of the assets.

The need for reinforcement arises due to a shortage of transmission capacity. The circuit could overload under single contingency conditions.

A condition assessment identified the need for the refurbishment and replacement of assets.
Reinforcement of the Transmission Network in the Louth area

Project
- Louth 275 kV Station Refurbishment – 110 kV Busbar Re-configuration & New Couplers (CP0799)

Description
The driver for this project is security of supply.

There are two areas of need for the project:

- The need for network reinforcement; and
- The need for refurbishment works due to the condition of the assets.

The need for reinforcement arises due to:

- A shortage of transmission capacity; and
- Possible overload of the 110 kV busbar and some circuit breakers

In addition, the station works also involve refurbishment works due to the condition of the assets. These works will be undertaken at the same time as the uprating works.

Reinforcement of the Transmission Network in Galway

Projects
- Cashla – Salthill 110 kV Line Uprate and Refurbishment (CP0865)
- Cashla 110 kV Station – Uprate Two 110 kV Circuit Breakers (CP0849)
- Galway 110 kV Station – Uprate Two 110 kV Circuit Breakers (CP0881)

Description
The drivers for these projects are RES integration and security of supply.

The need for reinforcement arises due to a shortage of transmission capacity.

Network studies have indicated future overloads on the Cashla - Salthill 110 kV line under single contingency conditions. This overload could occur primarily as a result of the planned connection of new generation. In addition, a Line Condition
Assessment identified the need for refurbishment due to the condition of the line. Refurbishment works will be carried out at the same time as the uprating works.

The driver for the uprate of the circuit breakers in Cashla and Galway 110 kV stations is RES integration.

Planning studies indicate that the level of generation connecting to the network will increase the fault level and could overload existing equipment.

Reinforcement of the Transmission Network in Roscommon and Leitrim

Projects

- Carrick-on-Shannon 110 kV Station – Busbar Uprate, New Coupler & Refurbishment Works (CP0697)
- Carrick-on-Shannon 110 kV Station – Uprate Four 110 kV Circuit Breakers (CP0834)
- Carrick-on-Shannon - Arigna T - Corderry 110 kV Line Uprate and Refurbishment (CP0870)

Description

The drivers for these projects are RES integration and security of supply.

The need for reinforcement arises due to a shortage of transmission capacity. Network studies have indicated future overloads on the Carrick-on-Shannon - Arigna T - Corderry 110 kV line under single contingency conditions. In addition, a Line Condition Assessment identified the need for refurbishment due to the condition of the line.

The connection of renewable generation facilitates higher flows on the 110 kV network. These higher flows may result in higher loading of the Carrick-on-Shannon 110 kV busbar. The existing rating of the busbar is inadequate for the future needs of the station; therefore, Carrick-on-Shannon 110 kV busbar needs to be uprated.

In addition, four 110 kV line bay circuit breakers in Carrick-on-Shannon 110 kV station will be replaced and uprated due to the condition of the assets.
Reinforcement of the Transmission Network in the Mullingar Area

Project

- Kinnegad - Mullingar 110 kV New Circuit (CP0596)\(^{43}\)

Description

The driver for this project is security of supply.

The need in the Mullingar area was identified through network studies which indicated violations of voltage limits under maintenance-trip conditions. The installation of capacitors is an interim solution until the long term solution of a new circuit between Kinnegad and Mullingar 110 kV stations is in place.

Reinforcement of the Transmission Network in the Offaly Area

Projects

- Mount Lucas - Thornsberry 110 kV New Circuit (CP0197)\(^{44}\)
- Thornsberry 110 kV Station – Busbar Uprate (CP0724)

Description

The driver for these projects is security of supply.

The DSO has requested a second connection to the existing Thornsberry 110 kV station. This is provided by the new Cushaling - Thornsberry 110 kV circuit (CP0197).

Planning studies indicate that the connection of new generation and the building of new infrastructure will increase the power flowing through the area. This could potentially overload the existing busbar in Thornsberry 110 kV station. Thus, the busbar needs to be uprated.

\(^{43}\) More information is available at www.eirgridgroup.com.

\(^{44}\) Formerly Cushaling - Thornsberry 110 kV New Circuit.
Reinforcement of the Transmission Network in Laois

Project

- Coolnabacky - Portlaoise 110 kV Line Uprate (CPo835)

Description

The drivers for this project are security of supply and RES integration. This project is related to the Laois - Kilkenny Reinforcement Project (CPo585) which is required to address quality of supply and provide security of supply in the area. The need for reinforcement arises due to a shortage of transmission capacity. Studies have indicated overloading for an intact network, single contingency and maintenance trip combinations. In addition, refurbishment works due to the condition of the circuit will be undertaken at the same time as the uprating works.

Other approved projects

In addition to the network reinforcement projects described above, there are also other approved projects in the Border, Midlands and West planning area, namely:

- Mullingar 110 kV Station – Transmission Works Associated with Installation of New 38 kV GIS (CPo777); and
- Castlebar 110 kV Station – Transmission Works Associated with Installation of New 38 kV GIS (CPo778).

Future Needs Driving Potential Projects

At the time of the data freeze date there are also projects at earlier stages of development and investigation. Detailed studies will determine whether these projects are required:

- Associated Transmission Reinforcements (ATRs) which are available on the EirGrid website (www.eirgridgroup.com) and updated quarterly;
- Voltage support at a number of stations in the Border, Midlands and West planning area. The need for voltage support was identified through system wide transmission network studies. Detailed studies on the individual
areas requiring support are being undertaken. Future TDPs will report on the specific projects resulting from the detailed studies; and

- The DSO is considering, in conjunction with us, a new 110 kV station in the vicinity of Athenry, Co. Galway.
6.3 The South-West & Mid-West Planning Area

The South-West & Mid-West Planning Area Overview

The South-West and Mid-West planning area is made up of the following counties categorised by statutory region:

- The South-West: Kerry and Cork
- The Mid-West: Clare, Limerick and North Tipperary

2025 Forecast Regional Generation and Demand Balance

<table>
<thead>
<tr>
<th>Generation</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4559 MW</td>
<td>1166 MW</td>
</tr>
</tbody>
</table>

Summary of TDP Projects

<table>
<thead>
<tr>
<th>TDP Project Category</th>
<th>No. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>13</td>
</tr>
<tr>
<td>Uprate/ Modify</td>
<td>21</td>
</tr>
<tr>
<td>Refurbish/ Replace</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
</tr>
</tbody>
</table>

Regional Description

The South-West and Mid-West planning area has a wide variety of generation sources dispersed around the planning area. These include: wind, hydro, gas, and coal

45 The Forecast Regional Generation and Demand Balance is based on Generation and Demand levels published in GCS 2015, and uses the nodal split at individual transmission interface stations published in the TYTFS 2014
burning power stations.

The planning area has considerably more generation than demand. The existing transmission network is composed of 110 kV, 220 kV and 400 kV infrastructure. The high capacity 220 kV and 400 kV circuits facilitate high inter-regional power flows from the planning area.

The development of the transmission network in the area is characterised by the connection of high levels of wind generation in the Co. Cork and Co. Kerry areas. These high levels of generation result in transmission network constraints as power is exported out of the area towards the Moneypoint and Knockraha transmission stations. Generation levels in the area are set to increase in the coming years. This is due to generators that currently have connection agreements and live connection offers connecting to the transmission and distribution networks.

In addition, EirGrid and the French TSO, RTÉ, are undertaking a joint project to investigate the development of a HVDC interconnector between Ireland and France that could potentially connect along the south coast.

To cater for the high levels of generation relative to local demand, network reinforcement is needed to enable the efficient export of generation from the area.

There are also reinforcement needs due to:

- Local constraints related to a shortage of transmission capacity and voltage support; and
- Asset condition.

The projects described in this section will enable the transmission network to safely accommodate the power flows, resulting from an excess of regional generation. They will also provide benefits to existing and future users of the transmission network in the planning area and facilitate broad future regional load growth.
The 38 projects in the South-West and Mid-West planning area are discussed in more detail below. The status of the network development projects is noted in Appendix C.

Please refer to Figures 5.1 and 5.2 for locational information of planned Network Developments in the South-West & Mid-West Planning Area in Phases 2 & 3.

Reinforcement of the 220 kV Transmission Network in Kerry and West Cork for New Connections

Projects

- Ballyvouskil\(^{46}\) 220/ 110 kV New Station (CPo650)\(^{47}\)
- Ballynahulla\(^{48}\) 220/ 110 kV New Station (CPo651)\(^{49}\)
- Knockanure\(^{50}\) 220/ 110 kV New Station (CPo500)\(^{51}\)
- Ballynahulla 220/ 110 kV Station – Second 220/ 110 kV Transformer (CPo840)

Description

The driver for these projects is RES integration.

The need for reinforcement arises as the existing 110 kV network will not be able to accommodate the amount of wind generation planned for the area.

The new Knockanure (CPo500), Ballynahulla (CPo651) and Ballyvouskil (CPo650) 220/ 110 kV stations will be looped into the existing Tarbert – Clashavoon 220 kV circuit. The second 220/ 110 kV transformer will provide increased capacity and mitigate harmonic resonances introduced by the connection of 110 kV cables in the area.

\(^{46}\) Formerly referred to as Millstreet.

\(^{47}\) More information is available at www.eirgridgroup.com.

\(^{48}\) Formerly referred to as East Kerry North West Cork.

\(^{49}\) More information is available at www.eirgridgroup.com.

\(^{50}\) Formerly referred to as North Kerry.

\(^{51}\) More information is available at www.eirgridgroup.com.
Reinforcement of the 220 kV Transmission Network out of Kerry and West Cork towards the North and East directions

Projects

- Kilpaddoge - Knockanure and Ballyvouskil - Clashavoon 220 kV Line Uprates and Kilpaddoge - Tarbert 220 kV Line Refurbishment (CP0763)
- Ballynahulla - Ballyvouskill and Ballynahulla - Knockanure 220 kV – Line Uprates (CP0883)

Description

The driver for the line uprate projects is RES integration and the driver for the line refurbishment is security of supply.

The need for refurbishment arises due to asset condition. The need for uprating arises due to the connection of large amounts of wind generation in Kerry, west Cork and west Limerick. This results in higher power flows on the transmission network. Studies have indicated overloading of these circuits under single contingency and maintenance-trip conditions.

These projects are part of an overall strategy to increase the capacity for the potentially large power flows out of the area. The power will flow north towards Moneypoint and east towards Knockraha transmission stations and onwards to the large demand centres of Cork and Dublin.

Reinforcement of the Transmission Network in North Kerry

Projects

- Kilpaddoge 220/110 kV Station – New Station to the West of Tarbert 220/110 kV Station (CP0647)
- Tarbert 220/110 kV Station Refurbishment (CP0622)

Description

The driver for these projects is security of supply.

52 Formerly part of CP0763.
53 More information is available at www.eirgridgroup.com.
The need for reinforcement arises due to local constraints on the transmission network. The physical capacity of Tarbert 220/110 kV station is close to being reached. The new Kilpaddogge station will replace many of the functions of the existing Tarbert station.

The new Kilpaddogge station is necessary to allow for the essential expansion of transmission connections in north Kerry. The existing Tarbert transmission station is being retained. However, due to the age and condition of the assets in Tarbert station a project involving the refurbishment of the 220 kV assets is progressing.

Reinforcement of the Transmission Network across the Shannon Estuary between North Kerry and Clare

Projects

- Moneypoint - Kilpaddoge 220 kV New Cable (CP0399) (RegIP/117)\(^{54}\)
- Moneypoint - Knockanure 220 kV Project (CP0726) (RegIP/117)\(^{55}\)

Description

The drivers for these projects are RES integration and security of supply.

The need for reinforcement arises due to the connection of large amounts of wind generation in Kerry, west Cork and west Limerick. This results in higher power flows on the transmission network. Studies have indicated overloading of circuits in the area under single contingency and maintenance-trip conditions.

The new Moneypoint - Kilpaddoge 220 kV cable will relieve constraints and allow for the increased power flows in the Mid-West and South-West Ireland that arise from the connection of renewable and conventional generation.

These projects are part of an overall strategy to increase the capacity for the potentially large power flows out of the area. The power will flow north towards Moneypoint and east towards Knockraha transmission stations and onwards to the large demand centres of Cork and Dublin.

\(^{54}\) Formerly part of TYNDP Project No. 83.
\(^{55}\) Formerly part of TYNDP Project No. 83.
Reinforcement of the Transmission Network in Clare

Projects

- Moneypoint 400/ 220/ 110 kV GIS Development (CP0688)
- Ennis - Booltiagh - Tullabrack T - Moneypoint 110 kV Line Uprate (CP0597)
- Ardnacrusha 110 kV Station Redevelopment (CP0054)

Description

The drivers for these projects are security of supply and RES integration.

The need for reinforcement arises due to a shortage of transmission capacity and voltage support in the area.

These needs were identified through network studies. These indicated potential overloading and violations of voltage limits in the Clare area under maintenance-trip and single contingency conditions.

The preferred solution to address voltage violations in the area is a new 220/ 110 kV transformer in Moneypoint 400 kV station. The new transformer and the uprate of the Ennis - Booltiagh - Tullabrack T - Moneypoint 110 kV circuit will address the shortage of transmission capacity in the area.

The 400 kV transmission equipment in Moneypoint and the entire Ardnacrusha 110 kV transmission station need to be replaced because of the condition of the assets. These projects will also contribute to facilitating the growing number of renewable generators in west Clare.

Reinforcement of the Transmission Network in West Cork

Projects

- Clashavoon - Dunmanway 110 kV New Line (CP0501)
- Dunmanway 110 kV Station - Busbar Uprate & New Coupler (CP0709)
- Carrigadrohid - Macroom 110 kV Line Uprate (CP0716)

56 The recent installation of capacitors at Ardnacrusha and Drumline 110 kV stations are interim solutions to the voltage needs in the area.

57 More information is available at www.eirgridgroup.com.
Transmission Development Plan 2015-2025

- Clashavoon - Macroom No. 2 New 110 kV Circuit and Increased Transformer Capacity in Clashavoon (CP0829)

Description

The drivers for these projects are security of supply and RES integration.

The need for the new Clashavoon - Dunmanway and Clashavoon - Macroom 110 kV circuits, and increased transformer capacity in Clashavoon 220 kV station arises due to a shortage of transmission capacity in the area. Studies have indicated overloading of existing circuits and of a transformer in the area under maintenance-trip conditions. The new Clashavoon - Dunmanway and Clashavoon - Macroom 110 kV circuits will provide other routes into the west Cork area. This will secure supplies to the area and enable export of excess generation.

Similarly, studies have indicated overloading of the Carrigadrohid - Macroom 110 kV circuit under single contingency and maintenance-trip conditions and thus it needs to be uprated.

In addition, the capacity of the existing Dunmanway 110 kV busbar is inadequate for the future potential power flows through the station. Therefore, Dunmanway 110 kV busbar needs to be uprated. A new coupler is also being installed in Dunmanway 110 kV station to improve security of supply in the area and to increase the flexibility of the network.

Reinforcement of the Transmission Network in the Cork City area

Projects

- Raffeen - Trabeg 110 kV No. 1 Line Uprate (CP083058)
- Aghada 220/ 110 kV Station Upgrade (CP0794)
- Knockraha 220 kV Station Upgrade (CP0796)
- Kilbarry 110 kV Station – Uprate Three 110 kV Circuit Breakers (CP0851)

Description

58 Previously numbered CP0754.
The driver for these projects is security of supply. Together they will create and maintain the requisite levels of reliability and flexibility in the transmission network.

The need for the Raffeen - Trabeg 110 kV line uprate is due to a shortage of transmission capacity. Studies have indicated overloading of the circuit under single contingency conditions.

The need for the Aghada and Knockraha 220/110 kV station upgrade projects arises due to a number of local constraints on the transmission network. Studies have indicated the potential unacceptable loss of generation and voltage violations without these projects. In addition, without these projects, potential overloading of equipment within Aghada station and of circuits in the Cork and Waterford area have been identified.

The Aghada project also involves refurbishment works due to the condition and age of assets in the station.

The driver for the uprate of the circuit breakers in Kilbarry 110 kV station is RES integration.

Planning studies indicate that the level of generation connecting to the network will increase the fault level and could overload existing equipment.

Reinforcement of the Transmission Network in Limerick

Project

- Killonan 220/110 kV Station Redevelopment (CP0624)

Description

The driver for the Killonan 220/110 kV project is security of supply.

The Killonan station forms the main bulk supply point for the Mid-West region and is an important node on the network.

A major project involving the redevelopment of the entire station is currently in progress. This is required because of the condition and age of the transmission equipment in the station.
Reinforcement of the Transmission Network in Tipperary

Project

- Ikerrin T - Thurles 110 kV Line Upate & Thurles 110 kV Station – Busbar Upate & New Coupler (CP0657)

Description

The drivers for this project are security of supply and RES integration.

The need to uprate the Ikerrin T - Thurles 110 kV line is because of a shortage of transmission capacity. There is a requirement for additional transmission capacity in the area as a result of the connection and planned connection of new wind farms.

Studies have indicated overloading of the Ikerrin T - Thurles 110 kV circuit under single contingency conditions. The existing Thurles 110 kV busbar may be overloaded by expected higher flows on the 110 kV network. Because of this Thurles 110 kV busbar needs to be uprated.

A new coupler is also being installed in Thurles 110 kV station. This is required to improve security of supply in the area and to increase operational flexibility. This is particularly relevant during the outage season.

Reinforcement of the Transmission Network in the South-West and Mid-West Planning Area for New Generation Connections

Projects

- Cloghboola 110 kV New Station & Connection to Trien 110 kV Station – New Wind Farm Connections (CP0608)
- Cloghboola 110 kV Station – New Windfarm and New DSO Transformers (CP0790)
- Clahane 110 kV Station – Reconfiguration works associated with Wind Farm Extension (CP0852)
- Kilpadoge 220 kV Station – New 110 kV DSO Transformer Bay (CP0925)
• Aughinish 110 kV Station – New 110 kV DSO Transformer Bay (CP0892)
• Charleville 110 kV Station – New 110 kV DSO Transformer Bay (CP0875)
• Cordal 110 kV New Station & Connection to Ballynahulla 220/110 kV New Station – New Wind Farm Connections (CP0818)
• Boggeragh 110 kV Station – New 110 kV Bay for New TSO Wind Farm Connection (CP0828)

Description
The driver for these projects is RES integration.
The need for reinforcement is because of the requirement for new generation connections. These are the shallow connections for a number of wind farms.

Reinforcement of the Transmission Network in the South-West and Mid-West Planning Area for New and Modified Demand Connections

Projects
• Macroon 110 kV Station – New 110 kV Bay for DSO Connection to Hartnett’s Cross 110 kV New Station (CP0041)
• Barrymore 110 kV Station Extension & Loop in to Cahir - Knockraha 110 kV Circuit (CP0707)
• Trabeg 110 kV Station – Uprate 2 110 kV Bays for DSO Transformers (CP0741)
• Bandon 110 kV Station – Uprate 110 kV Bay for DSO Transformer (CP0627)
• Cow Cross 110 kV Station – New 110 kV Bay for DSO Transformer (CP0743)
• Midleton 110 kV Station – New 110 kV Bay for DSO Transformer (CP0863)

Description
The driver for these projects is security of supply.
The need for reinforcement is because of the requirement for new and modified demand connections. These projects are the shallow connections for a number of DSO demand connections.
Other approved projects

In addition to the network reinforcement projects described above, there are also other approved projects in the South-West and Mid-West planning area, namely:

- Moneypoint - Oldstreet 400 kV Line Refurbishment (CP0824); and
- Tarbert - Tralee No. 1 Line Refurbishment (CP0864).

Future Needs Driving Potential Projects

At the time of the data freeze date there are also projects at earlier stages of development and investigation.

We are currently investigating the installation of voltage support at a number of stations in the South-West and Mid-West planning area. The need for voltage support was identified through system wide transmission network studies. Detailed studies on the individual areas requiring support are being undertaken. Future TDPs will report on the specific projects resulting from the detailed studies.

The DSO is considering, in conjunction with us, a new 110 kV station in the Blackpool/ Kilbarry area of Cork City.

We are also currently working with RTE, the French TSO, on a joint project investigating the business case for an interconnector between Ireland and France (TYNDP/ 107). The potential connection point is expected to be in the south of the country including this planning area. The main drivers of this future potential project are market integration and generation integration.
6.4 The South-East, Mid-East & Dublin Planning Area

The South-East, Mid-East & Dublin Planning Area Overview

The South-East, Mid-East and Dublin planning area is made up of the following counties categorised by statutory region:

- The South-East: South Tipperary, Waterford, Wexford, Kilkenny and Carlow
- The Mid-East: Wicklow, Kildare and Meath
- Dublin

2025 Forecast Regional Generation and Demand Balance\(^{59,60}\)

![Diagram showing Generation and Demand Balance]

- **Generation**: 3927 MW
- **Demand**: 2750 MW

Summary of TDP Projects

<table>
<thead>
<tr>
<th>TDP Project Category</th>
<th>Total no. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Build</td>
<td>9</td>
</tr>
<tr>
<td>Uprate/ Modify</td>
<td>15</td>
</tr>
<tr>
<td>Refurbish/ Replace</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
</tr>
</tbody>
</table>

\(^{59}\) The Forecast Regional Generation and Demand Balance is based on Generation and Demand levels published in GCS 2015, and uses the nodal split at individual transmission interface stations published in the TYTFS 2014.

\(^{60}\) The EWIC point of connection is in this Region. In the forecast Generation/ Demand balance portrayed above, EWIC is considered to be a 500 MW generation source. However, EWIC can be either a generation or demand source. With EWIC as a 530 MW demand source (Max. export capacity of EWIC), the forecast regional balance would be 3427 MW Generation / 3280 MW Demand.
Regional Description

The South-East, Mid-East and Dublin planning area has a wide variety of generation sources dispersed around the planning area including pumped storage; gas burning power stations; and the 500 MW East West Interconnector.

The Greater Dublin Area is the major load centre on the Irish transmission network. It accounts for approximately one third of the total Irish demand. In contrast to the other planning areas the South-East, Mid-East and Dublin planning area does not have a substantial excess of generation relative to demand. The existing regional transmission network is comprised of 110 kV, 220 kV and 400 kV infrastructure.

The transmission network has to meet a number of diverse power flows that can vary depending on:

- The generation dispatch;
- Network demand;
- Interconnector flows; and
- Network topology.

The network must accommodate high density demand in the area, and local generation exports. Additionally the network can be subject to high inter-regional power transfers from both north to south and south to north.

The development of the transmission network in the area is characterised by the displacement of thermal generation in Dublin for wind generation. This wind generation is coming from the West and South-West in particular. The effect of this is an increase in power flows through the South-East.

In addition, EirGrid and the French TSO, RTÉ, are undertaking a joint project to investigate the development of a HVDC interconnector between Ireland and France. This could potentially connect along the south coast.

Network reinforcement will be required to cater for the power flows resulting from additional generation and interconnection. This will enable the efficient transfer of power to the load centres of the eastern seaboard and the Dublin area.

There are also reinforcement needs due to;
- Local constraints related to a shortage of transmission capacity and voltage support;
- Asset condition; and
- To accommodate further market integration.

The projects described in this section will enable the transmission network to safely accommodate more diverse power flows. They will also provide benefits to existing and future users of the transmission network in the planning area and facilitate broad future regional load growth.

The 38 projects in the South-East, Mid-East and Dublin planning area are discussed in more detail below. The status of the network development projects is noted in Appendix C.

Please refer to Figures 5.1 and 5.2 for locational information of planned Network Developments in the South-East, Mid-East & Dublin Planning Area in Phases 2 & 3.

Reinforcement of the Transmission Network between Munster and Leinster Project

- The Grid Link Project (CP0732) (RegIP/83)\(^{61,62}\)

Description

There is a significant amount of existing, new and contracted conventional and renewable generation connected or seeking to connect in the south and south-west.

As a result, the main flow of electricity in the southern half of the Irish network is from the south and south-west towards the demand centres on the east coast. Network studies indicate the existing network cannot manage such large power flows. Numerous contingency scenarios result in widespread voltage violations and voltage collapse.

\(^{61}\) More information is available at www.eirgridgroup.com.

\(^{62}\) Formerly labelled TYNDP Project No. 83.
Large changes in system voltage can also prevent automatic reclosing of lines. This has a serious impact on circuit availability and system reliability, hence reducing security of supply.

There are also some overloads of transmission circuits. Thus the network between Munster and Leinster needs to be strengthened.

In line with our draft grid development strategy\(^{63}\) three options were investigated:

- A HVDC underground cable;
- A 400 kV overhead line; and
- A regional solution, comprising:
 - A new underwater circuit across the Shannon Estuary;
 - The introduction of a new technology to Ireland called series compensation; and
 - A number of enhancements to existing plant and equipment.

A report on these options was submitted to the Government appointed Independent Expert Panel. In October 2015 we selected the regional solution as the preferred option.

Reinforcement of the Transmission Network in the Midlands and South East Regions including Kildare

Project

- Laois - Kilkenny Reinforcement Project (CP0585) (\(\#\) RegIP/ 465), comprising:
 - A new 400/ 110 kV station near Portlaoise (looped into the existing Dunstown - Moneypoint 400 kV and Athy - Portlaoise 110 kV lines);
 - A new 110 kV circuit from this station to a new 110 kV station at Ballyragget, Co. Kilkenny;
 - A 80 MVAR 400 kV Shunt Reactor relocated from Dunstown; and

- A 110 kV uprate to the existing Ballyragget - Kilkenny line which is currently operated at 38 kV.

Description

This project is required to address quality of supply issues and provide security of supply in Kilkenny, Carlow, Kildare and Laois.

The need for reinforcement arises due to a shortage of transmission capacity and voltage support across the planning area. These needs were identified through network studies. These indicated potential violations of voltage limits throughout the area under single contingency conditions and loss of load violations in Kilkenny under maintenance-trip conditions.

The installation of a capacitor in Kilkenny 110 kV station in 2010 was a short term measure to maintain supply standards to the area. The Laois - Kilkenny reinforcement addresses the medium to long term quality and security of supply concerns.

Reinforcement of the Transmission Network in Kildare

Project

- Dunstown 400/220 kV Station – New 400/220 kV 500 MVA Transformer (CP0683)

Description

This project is required to support the connection of the East West Interconnector. The need for reinforcement arises due to a shortage of transmission capacity in the station. This need was identified through network studies which indicated overloading of the existing transformer in the station under single and maintenance-trip contingency conditions.

64 More information is available at www.eirgridgroup.com.
Reinforcement of the Transmission Network in the South East

Projects
- Great Island 220 kV Station Redevelopment (CP0623)
- Great Island 110 kV Station Redevelopment (CP0729)

Description
The driver for these projects is security of supply.

Great Island 220/110 kV station is one of the main bulk supply points in the South-East region. A major redevelopment is required due to the condition and age of the assets. These works will involve the development of a new station which will replace the current one.

Reinforcement of the Transmission Network between Limerick and the South Midlands

Projects
- Cauteen - Killonan 110 kV Line Uprate (CP0755)
- Cauteen - Tipperary 110 kV Line Uprate (CP0756)
- Cahir - Tipperary 110 kV Line Uprate & Tipperary 110 kV Station Busbar Uprate (CP0744)

Description
The driver for these projects is RES integration.

The need for these reinforcements arises due to a shortage of transmission capacity. The capacity of the existing infrastructure is close to being exceeded primarily as a result of the connection of new wind farms.

These needs were identified by network studies which indicated the overloading of a number of existing circuits and busbars under single contingency conditions.

Station complete and cable transfer complete, de-commissioning won’t be complete until 2016
Reinforcement of the Transmission & Distribution Networks in the Greater Dublin Area

Projects

- Dublin North Fringe 220/110 kV Project – New 220/110 kV Station to the East of Finglas 220/110 kV Station (CP0437)
- Carrickmines 220/110 kV Station – New 4th 220/110 kV 250 MVA Transformer & GIS Development (CP0580)
- Finglas 110 kV Station Redevelopment (CP0646)
- Inchicore 220 kV Station Upgrade (CP0692)
- Finglas 220 kV Station Upgrade (CP0792)
- Finglas 220 kV Station – Transformer Replacement Project (CP0860)
- West Dublin New 220/110 kV Station (CP0872)

Description

The driver for these projects is security of supply.

The need for reinforcement arises due to local constraints on the transmission and distribution networks. There is a requirement for additional capacity at a number of locations in the Greater Dublin Area due to load growth. This is primarily at:

- The existing Carrickmines 220/110 kV station;
- The new Dublin North Fringe 220/110 kV station to the east of the existing Finglas 220/110 kV station; and
- The new West Dublin 220/110 kV station between Inchicore and Maynooth 220/110 kV stations.

These needs were identified through co-ordinated TSO and DSO network studies. These indicated the overloading of a number of existing circuits and transformers under single contingency conditions.

66 The DSO operates the 110 kV network in Dublin.
67 More information is available at www.eirgridgroup.com.
Replacement of substation equipment works are progressing in Inchicore, Carrickmines and Finglas 220/110 kV stations to address the condition and age of the assets. These stations are major bulk supply points in Dublin.

Inchicore and Finglas 220 kV stations also have their own specific needs. The need for these stations’ upgrade projects arises due to a number of local constraints on the transmission network.

In the case of Inchicore, network studies have indicated that the capacity of some of the existing switchgear is close to being exceeded. While in Finglas 220 kV station, studies have indicated the potential for loss of load without this project.

Reinforcement of the Transmission Network in the Greater Dublin Area

Projects

- Corduff - Ryebrook 110 kV Line Uprate & Ryebrook 110 kV Station Busbar Uprate (CP0668)
- Inchicore - Maynooth No. 1 & 2 220 kV Line Uprate (CP0667)
- Maynooth - Ryebrook 110 kV Line Uprate (CP0747)
- Installation of 100 MVar Voltage Support in the Dublin Region (CP0760)
- Cloghran - Corduff 110 kV New Cable (CP0859)

Description

The driver for these projects is security of supply.

The need for reinforcement arises due to local constraints on the transmission network. There is a requirement for additional capacity and voltage support in the Dublin region.

The capacity needs were identified by network studies. These indicated the overloading of a number of existing circuits under single and maintenance-trip contingency conditions.

The need for voltage support in the Dublin region was identified through analysis and operational experience. Violation of upper voltage limits at a number of transmission stations were identified.
Reinforcement of the Transmission Network in the South-East, Mid-East and Dublin Planning Area for New and Modified Demand Connections

Projects

- Great Island 220/ 110 kV Station – New 110 kV DSO Transformer Bay for DSO Connection to Knockmullen (New Ross) (CP0490)
- Wexford 110 kV Station – New 110 kV Bay for DSO Transformer & New Coupler (CP0486)
- Ryebrook 110 kV Station Redevelopment (CP0789)
- Baroda 110 kV Station – 2 New 110 kV Bays for DSO Transformers (CP0693)
- Waterford 110 kV Station – Uprate 110 kV Bay (CP0753)
- Cloghran 110kV Station – New Cable Bay and New Transformer Bay (CP0862)
- Great Island 220 kV Station – New DSO Transformer (CP0894)

Description

The driver for these projects is security of supply.

The need for reinforcement arises due to the requirement for new and modified demand connections. These are the shallow connections for a number of DSO connections and a modified transmission demand connection.

Reinforcement of the Transmission Network in the South-East, Mid-East and Dublin Planning Area for New Generation Connections

Projects

- Woodhouse 110 kV New Station – New Wind Farm Connection (CP0705)
- Meath Hill 110 kV Station – Uprate 2 DSO Transformers (CP0914)

Description

The driver for this project is RES integration. The need for reinforcement arises due to the requirement for new generation connections.
Other approved projects

In addition to the network reinforcement projects described above, there are also other approved projects in the South-East, Mid-East and Dublin planning area, namely:

- Shelton Abbey 110 kV Station – Protection Upgrade (CP0508);
- Dunstown - Kellis 220 kV Line Refurbishment (CP0769);
- Cullenagh - Knockraha – Polymeric Insulator Replacement (CP0911)
- Dunfirth - Kinnegad - Rinawade 110 kV Line Refurbishment (CP0797);
- Dunstown - Turlough Hill 220 kV Line Refurbishment (CP0798);
- Oldstreet - Woodland 400 kV Line Refurbishment (CP0825);
- Poolbeg 220 kV Station – Fencing (CP0770);
- Dungarvan 110 kV Station – Transmission Works Associated with Installation of New 38 kV GIS (CP0779); and
- Maynooth - Woodland 220kV Line Refurbishment (CP0869).

Future Needs Driving Potential Projects

At the time of the data freeze date there are also projects at earlier stages of development and investigation. We are currently investigating the installation of voltage support in the South-East, Mid-East and Dublin planning area.

The need for voltage support was identified through system wide transmission network studies. Detailed studies on the individual areas requiring support are being undertaken. Future TDPs will report on the specific projects resulting from the detailed studies.

There are also future potential projects to reinforce the transmission network in the Greater Dublin Area. Specifically, the corridor between Dunstown and Woodland 400 kV stations (RegIP/84), and in a later timeframe the corridor between Carrickmines and Dunstown stations (RegIP/777 and 778). The main driver for these projects is security of supply.

Formerly part of RegIP/84.
The existing 400 kV network provides a high capacity link between Moneypoint generation station and Galway on the west coast and Dublin on the east. We are currently investigating the expansion of the 400 kV network into the Greater Dublin Area. This reinforcement could be by the alteration of existing routes and equipment or with new overhead line or cable routes entirely.

A number of new data centre operators have expressed interest in connecting large-scale facilities in the Dublin area.

These proposals would see substantial power loads connecting in this region by 2020 – this would represent a significant increase on current and forecast demand. Depending on the number and scale of projects that materialise, this may require new transmission solutions. EirGrid is working to ensure that all reasonable requests for demand can be facilitated.

The DSO is considering, in conjunction with us, a new 110 kV station in the vicinity of Trim, Co. Meath and a new 110kV/ MV installation at Corduff 220/ 110 kV station.

The existing 220 kV circuit between Carrickmines and Arklow currently operates at 110 kV. Together with the DSO we are considering operation of this line at 220 kV. We are also assessing the impact of providing an alternative 110 kV connection to Ballybeg 110 kV station.

In addition, we are currently working with RTE, the French TSO, on a joint project. The project is to investigate the business case for an interconnector between Ireland and France (TYNDP/ 107). The potential connection point is expected to be in the south of the country (which includes this planning area). The main drivers of this future potential project are market integration and generation integration.
SUMMARY OF ENVIRONMENTAL APPRAISAL REPORT (EAR)

An EAR has been prepared as an accompanying document. The purpose of the EAR is to ensure the TDP 2015-2025 is in line with the strategic environmental objectives. These objectives are outlined in the Strategic Environmental Assessment (SEA) for the Grid25 Implementation Programme (IP) 2011-2016.

The TDP 2015-2025 includes 125 reinforcement projects that have been approved internally and are on-going. Of these, 83 were presented in TDP 2013, while the other 42 projects are new to TDP 2015.

These 42 projects consist of new builds, refurbishment/ replacement projects and uprate/ modification projects. These three categories of projects have been assessed against the Strategic Environmental Objectives (SEOs) from the SEA. Following the implementation of mitigation measures the SEOs will generally be achieved.

Therefore we consider the TDP 2015-2025 to be in accordance with the provisions of the Grid25 IP and its SEA.
APPENDIX A: PROJECT TERMS

This appendix explains terms that are used to describe projects in the following appendices.

Capital Project Number (CP No.): each project is referenced with a Capital Project number for coordination between ourselves and the TAO.

Estimated Completion Date (ECD): the estimates provided are subject to:

- the planning process where applicable;
- the construction progress; and
- availability of transmission outages and commissioning;

and may be liable to change.

Phase: the stage the project has progressed to on the data freeze date. There are three Phases in project development, namely:

Phase 1 involves:

- need identification;
- consideration of solutions;
- selection of the preferred solution(s); and
- internal capital approval

Phase 2 involves:

- outline design;
- EIA;
- public consultation;
- the public planning process; and
- the IA process up to PA with the TAO.

Phase 3 involves:

- detailed design;
- procurement;
• construction;

• commissioning; and

• energisation.

The main focus of the TDP is on projects in Phases 2 and 3. However, in chapter six projects that are in Phase 1 (future potential projects) are described at a high level.
APPENDIX B: CHANGES SINCE 2013

This appendix details the projects:

- Completed or cancelled since TDP 2013; and
- Those that are on hold or whose expected energisation dates have not been confirmed by the customer as of 31 March 2015.

Projects Completed since TDP 2013

Fifty projects have been completed since TDP 2013; they are listed in Table B.1 below.

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Date Project Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0594</td>
<td>Mullingar 110 kV Station - New Capacitors</td>
<td>Q2-13</td>
</tr>
<tr>
<td>CP0723</td>
<td>Cushaling 110 kV Station - Busbar Uprate</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0739</td>
<td>Mount Lucas 110 kV New Station - New Wind Farm Connection</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0759</td>
<td>Shannonbridge 220/110 kV Station - Uprate 2 110 kV Circuit Breakers</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0773</td>
<td>Bellacorick 110 kV Station - Busbar Uprate</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0384</td>
<td>Lisdrum - Louth 110 kV Line Refurbishment</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0764</td>
<td>Cathaleen’s Fall - Clogher No. 1 110 kV Line Uprate & Refurbishment</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0605</td>
<td>Booltiagh 110 kV Station - Modification for Booltiagh Wind Farm Phase 2 & 3</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0710</td>
<td>Reamore 110 kV New Station - New Wind Farm Connections</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0714</td>
<td>Clonkeen 110 kV Station Reconfiguration</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0748</td>
<td>Cashla - Prospect 220 kV Line Resagging</td>
<td>Q1-14</td>
</tr>
<tr>
<td>CP0689</td>
<td>Ennis 110 kV Station - Busbar Uprate & New Coupler</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0717</td>
<td>Clashavoon - Knockraha 220 kV Line Uprate</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Date Project Completed</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>CP0719</td>
<td>Inniscarra - Macroom 110 kV Line Uprate</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0674</td>
<td>Tralee 110 kV Station - New Coupler</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0696</td>
<td>Marina - Trabeg No. 1 & No. 2 110 kV Cable Uprates</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0762</td>
<td>Charleville - Mallow 110 kV Line Uprate</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0479</td>
<td>Atha 110 kV New Station - New Wind Farm Connections</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0213</td>
<td>Knockraha 220 kV Station Refurbishment - Part 2</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0228</td>
<td>Marina 110 kV Station Redevelopment</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0529</td>
<td>Thurles 110 kV Station - New Capacitor</td>
<td>Q2-13</td>
</tr>
<tr>
<td>CP0682</td>
<td>Woodland 400/ 220 kV Station - New 400/ 220 kV 500 MVA Transformer</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0702</td>
<td>Butlerstown - Cullenagh 110 kV Line Uprate</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0715</td>
<td>Great Island 220 kV Station - New Thermal Plant Connection</td>
<td>Q3-13</td>
</tr>
<tr>
<td>CP0701</td>
<td>Cullenagh - Dungarvan 110 kV Line Uprate</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0768</td>
<td>Kellis - Kilkenny 110 kV Line Refurbishment</td>
<td>Q2-13</td>
</tr>
<tr>
<td>CP0703</td>
<td>Remote Control for NCC Phase 2</td>
<td>Q3-14</td>
</tr>
<tr>
<td>CP0421</td>
<td>Binbane - Letterkenny 110 kV New Line</td>
<td>Q2-14</td>
</tr>
<tr>
<td>CP0772</td>
<td>Sligo 110 kV Station - Busbar Uprate, New Coupler & Refurbishment Works</td>
<td>Q4-14</td>
</tr>
<tr>
<td>CP0745</td>
<td>Cathaleen's Fall - Srananagh No. 2 110 kV Line Uprate</td>
<td>Q4-14</td>
</tr>
<tr>
<td>CP0734</td>
<td>Cathaleen's Fall 110 kV Station - Busbar Uprate</td>
<td>Q4-14</td>
</tr>
<tr>
<td>CP0791</td>
<td>Cunghill - Glenree 110 kV Line Uprate & Refurbishment</td>
<td>Q3-14</td>
</tr>
<tr>
<td>CP0746</td>
<td>Moneypoint - Prospect 220 kV Line Refurbishment</td>
<td>Q2-14</td>
</tr>
<tr>
<td>CP0761</td>
<td>Lisheen 110 kV Station - New Bay for New DSO</td>
<td>Q2-14</td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Date Project Completed</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>CP0783</td>
<td>Wind Farm Connection</td>
<td>Q4-14</td>
</tr>
<tr>
<td>CP0698</td>
<td>Kilbarry - Knockraha No. 1 110 kV Line Uprate</td>
<td>Q3-14</td>
</tr>
<tr>
<td>CP0708</td>
<td>Prospect - Tarbert 220 kV Line Uprate</td>
<td>Q2-14</td>
</tr>
<tr>
<td>CP0507</td>
<td>Navan 110 kV Station - Busbar Uprate & New Coupler</td>
<td></td>
</tr>
<tr>
<td>CP0811</td>
<td>Arklow 220/110 kV Station - New 110 kV Bay</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0728</td>
<td>Cahir - Thurles 110 kV Line Uprate</td>
<td>Q4-14</td>
</tr>
<tr>
<td>CP0265</td>
<td>Kill Hill 110 kV New Station - New Wind Farm Connection</td>
<td>Q4-14</td>
</tr>
<tr>
<td>CP0722</td>
<td>Cullenagh - Great Island 220 kV Line Uprate</td>
<td>Q2-14</td>
</tr>
<tr>
<td>CP0815</td>
<td>Transmission Station Flood Alleviation Measures</td>
<td>Q4-14</td>
</tr>
<tr>
<td>CP0691</td>
<td>Purchase of 220 kV and 110 kV Circuit Breakers for Short Circuit Remedial Purposes</td>
<td>Q4-14</td>
</tr>
<tr>
<td>CP0822</td>
<td>Louth - Woodland 220 kV Line Refurbishment</td>
<td>Q3-14</td>
</tr>
<tr>
<td>CP0371</td>
<td>HV Line Tower Painting - South</td>
<td>Q2-14</td>
</tr>
<tr>
<td>CP0559</td>
<td>Ballydine - Doon 110 kV Line Uprate & Ballydine 110 kV Busbar Uprate</td>
<td>Q2-13</td>
</tr>
<tr>
<td>CP0640</td>
<td>Butlerstown - Killoteren 110 kV Line Uprate & Butlerstown 110 kV Busbar Uprate</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0686</td>
<td>Bandon - Dunmanway 110 kV Line Refurbishment</td>
<td>Q4-13</td>
</tr>
<tr>
<td>CP0725</td>
<td>Wexford 110 kV Station - Replacement of Circuit Breakers on Capacitor Banks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Risk Transmission Station Flood Alleviation Measures</td>
<td>Q3-13</td>
</tr>
</tbody>
</table>

Table B-1 Projects Completed since TDP 2013 (50 Projects)
Projects Cancelled since TDP 2013

Five projects have been cancelled since TDP 2013; they are listed in Table B.2 below. Of these, one was active in TDP 2013 and four were on hold in TDP 2013.

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Initiated By</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0776</td>
<td>Kilbarry - Mallow 110 kV Part Line Uprate</td>
<td>TSO</td>
<td>Cancelled</td>
</tr>
<tr>
<td>CP0506</td>
<td>Finnstown 220/ 110 kV Project</td>
<td>DSO & TSO</td>
<td>Cancelled</td>
</tr>
<tr>
<td>CP0676</td>
<td>Ballakelly 220 kV Connection</td>
<td>Customer</td>
<td>Cancelled</td>
</tr>
<tr>
<td>CP0677</td>
<td>Caulstown 110 kV Connection</td>
<td>Customer</td>
<td>Cancelled</td>
</tr>
<tr>
<td>CP0673</td>
<td>Knocknagreenan 110 kV Connection</td>
<td>Customer</td>
<td>Cancelled</td>
</tr>
</tbody>
</table>

Table B.2 Projects Cancelled since TDP 2013 (5 Projects)

Projects On Hold

Six projects are on hold as at 31 March 2015; they are listed in Table B.2 below. Of these, four were active in TDP 2013, one was on hold in TDP 2013 and one is new to the TDP.

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Initiated By</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0619</td>
<td>Shankill 110 kV Station - Reactive Compensation</td>
<td>TSO</td>
<td>On Hold</td>
</tr>
<tr>
<td>CP0404</td>
<td>Mullagharnin 110 kV Station - New 110 kV Transformer Bay</td>
<td>DSO</td>
<td>On Hold</td>
</tr>
<tr>
<td>CP0816</td>
<td>North Connaught 110 kV Reinforcement Project</td>
<td>TSO</td>
<td>On Hold</td>
</tr>
<tr>
<td>CP0713</td>
<td>Kilbarry 110 kV Station - New 110 kV Bay for Blackpool 110 kV New Station</td>
<td>DSO</td>
<td>On Hold</td>
</tr>
<tr>
<td>CP0873</td>
<td>Dunstown - Moneypoint 400 kV Line Refurbishment</td>
<td>TSO</td>
<td>On Hold</td>
</tr>
<tr>
<td>CP0757</td>
<td>Remote Control for NCC Phase 3</td>
<td>TSO</td>
<td>On Hold</td>
</tr>
</tbody>
</table>

Table B.2 Projects On Hold (6 Projects)
Projects Whose Expected Energisation Dates Have Yet to be confirmed

There are seven projects whose expected energisation dates have yet to be confirmed by the customer. We will manage these projects in accordance with the long-stop dates in their connection agreements. Two of these projects are new to the TDP and five were in the same category in TDP 2013.

These projects are listed in Table B-3 below,

<table>
<thead>
<tr>
<th>CP No</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0609</td>
<td>Glanlee Wind Farm Phase II</td>
</tr>
<tr>
<td>CP0607 (NEW)</td>
<td>Athea Wind Farm Phase II</td>
</tr>
<tr>
<td>CP0874 (NEW)</td>
<td>Booltiagh 110 kV Station Extension</td>
</tr>
<tr>
<td>CP0641</td>
<td>Nore Power 110 kV Connection</td>
</tr>
<tr>
<td>CP0669</td>
<td>Cuilleen Power 110 kV Connection</td>
</tr>
<tr>
<td>CP0670</td>
<td>Suir Power 110 kV Connection</td>
</tr>
<tr>
<td>CP0602</td>
<td>Keelderry Windfarm 110 kV Connection</td>
</tr>
</tbody>
</table>

Table B-3 Projects Whose Expected Energisation Dates Have Yet to be Confirmed by the Customer (7 Projects)
APPENDIX C: PLANNED NETWORK DEVELOPMENTS

This appendix details active TDP 2015 projects and their driver(s), need(s), location, phase69 and ECD70. Projects are categorised by planning area71.

When reviewing the data in this appendix it is important to note the approach to describing the location of projects. If the project involves a circuit then both stations at either end of the circuit, and the counties the stations are located in, are noted. If the counties are in the same Planning Area then the Planning Area is listed only once.

If the project crosses Planning Areas then the multiple Planning Areas are included. If the project refers to a station then only one county and one Planning Area is listed for that project.

Also please note the following labels:

- “(NEW)” included with a project’s CP No. signifies that it is an additional new project that has been approved since TDP 2013;
- “\textcolor{red}{TYNDP/ TYNDP_Project_No}” or “\textcolor{red}{RegIP/ RegIP_Project_No}” included with a project’s title signifies that it is in ENTSO-E’s most recent TYNDP or RegIP North Seas that covers the period 2014 to 2024. Projects included in the TYNDP are Projects of European Significance (PES). These projects are listed in Appendix D; and
- “*” included with a project’s length signifies that the line length is an estimate at this time.

Data Management

The ECDs for some transmission projects are available and updated on an ongoing basis at the following websites:

- Associated Transmission Reinforcements on www.eirgridgroup.com
- On the CER website, PR3 Transmission Capital Expenditure Monitoring:

69 As at the data freeze date of 31 March 2015
70 As at the data freeze date of 31 March 2015
71 Some projects are in, or have the potential to be in, multiple planning areas
Projects in Multiple Planning Areas:

There are eight projects that are in multiple Planning Areas; these projects are listed in Table C-1 below.

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES Integration</th>
<th>Market Integration</th>
<th>Inter-Regional Power Flow</th>
<th>Local Constraints</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>County/Counties</th>
<th>Planning Area/s</th>
<th>Phase</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0755</td>
<td>Cauteen – Killonan 110 kV Line Uprate</td>
<td>Uprate/Modify</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tipperary South, Limerick</td>
<td>SE-ME-D, SW-MW</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0825</td>
<td>Oldstreet – Woodland 400 kV Line Refurbishment</td>
<td>Refurbish/Replace</td>
<td>126.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Galway, Tipperary, Offaly, Kildare, Meath</td>
<td>SE-ME-D, B-M-W</td>
<td>3</td>
<td>2017</td>
</tr>
<tr>
<td>CP0824</td>
<td>Moneypoint – Oldstreet 400 kV Line Refurbishment</td>
<td>Refurbish/Replace</td>
<td>102.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clare, Galway</td>
<td>SW-MW, B-M-W</td>
<td>2</td>
<td>2019</td>
</tr>
<tr>
<td>CP0585</td>
<td>Laois-Kilkenny Reinforcement Project</td>
<td>New Build</td>
<td>30*+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laois, Kilkenny</td>
<td>SE-ME-D, B-M-W</td>
<td>2</td>
<td>2018</td>
</tr>
<tr>
<td>CP0466</td>
<td>North South 400 kV Interconnection Development (TYNDP/81)</td>
<td>New Build</td>
<td>106*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meath, Cavan, Monaghan, Armagh, Tyrone</td>
<td>B-M-W, SE-ME-D</td>
<td>2</td>
<td>2019</td>
</tr>
<tr>
<td>CP0732</td>
<td>The Grid Link Project (TYNDP/81)</td>
<td>New Build</td>
<td>6*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kerry, Clare, Tipperary</td>
<td>SE-ME-D</td>
<td>1</td>
<td>2022</td>
</tr>
</tbody>
</table>

72 30 km accounts for the proposed new 110 kV circuit between the proposed new 400/110 kV station near Portlaoise and the proposed new 110 kV station at Ballyragget, while 22 km accounts for the proposed 110 kV uprate to the existing Ballyragget – Kilkenny line which is currently operated at 38 kV.
Table C-1 Planned Projects that are in Multiple Planning Areas (8 Projects)

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>DRIVERS</th>
<th>NEEDS</th>
<th>Location</th>
<th>Planning Area/s</th>
<th>Phase</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RegIP/ 83)²³</td>
<td></td>
<td></td>
<td>83²⁴</td>
<td>Security of Supply</td>
<td>Integration</td>
<td>Galway, Kilkenny, Wexford, Kildare</td>
<td>SW-MW, B-M-W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0911 (NEW)</td>
<td>Cullenagh Knockraha Polymeric Insulator Replacement</td>
<td>Refurbish/ Replace</td>
<td>0</td>
<td>Connection</td>
<td>Asset Condition</td>
<td>Waterford, Cork</td>
<td>SE-ME-D, SW-MW</td>
<td>2</td>
<td>2015</td>
</tr>
</tbody>
</table>

²³ In October 2015 we selected the regional solution as the preferred option.
²⁴ 6 km accounts for the proposed new circuit under the Shannon Estuary, while 83 km accounts for the proposed uprates to existing circuits.
Projects in the Border, Midlands and West Planning Area

There are 38 projects in the Border, Midlands and West Planning Area; these projects are listed in Table C-2 below.

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES</th>
<th>Integration</th>
<th>Market</th>
<th>Inter-Regional Power Flow</th>
<th>Local Constraints</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>County / Counties</th>
<th>Phase</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0197</td>
<td>Mount Lucas - Thornsberry New 110kV Line</td>
<td>New Build</td>
<td>30</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Offaly, Offaly</td>
<td>3</td>
<td>2017</td>
</tr>
<tr>
<td>CP0697</td>
<td>Carrick-on-Shannon 110 kV Station - Busbar Uprate & Other Works</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>Roscommon</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0724</td>
<td>Thornsberry 110 kV Station - Busbar Uprate</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Offaly</td>
<td>3</td>
<td>2017</td>
</tr>
<tr>
<td>CP0736</td>
<td>Cunghill - Sligo 110 kV Line Uprate</td>
<td>Uprate/Modify</td>
<td>24</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>Sligo, Sligo</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0777</td>
<td>Mullingar 110 kV Station - Transmission Works Associated with Installation of New 38 kV GIS</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westmeath</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0778</td>
<td>Castlebar 110 kV Station - Transmission Works Associated with Installation of New 38 kV GIS</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mayo</td>
<td>3</td>
<td>2017</td>
</tr>
<tr>
<td>CP0737</td>
<td>West Galway, Uggool/ Seacow New 110 kV Stations - New Wind Farm Connections</td>
<td>New Build</td>
<td>4.2*</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Galway</td>
<td>2</td>
<td>2016</td>
</tr>
<tr>
<td>CP0603</td>
<td>Cloagher and Mulreavy 110 kV New Stations - New Wind Farm Connections</td>
<td>New Build</td>
<td>7.7*</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Donegal, Donegal</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0596</td>
<td>Kinnegad - Mullingar 110 kV New Circuit</td>
<td>New Build</td>
<td>27*</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meath, Westmeath</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0644</td>
<td>Bracklone 110 kV New Station & Loop in</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laois</td>
<td>2</td>
<td>2018</td>
</tr>
<tr>
<td>CP0706</td>
<td>Cloon 110 kV Station - New 110 kV</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Galway</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>DRIVERS</td>
<td>NEEDS</td>
<td>Location</td>
<td>Phase</td>
<td>ECD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>----</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0731</td>
<td>Bellacorick - Castlebar 110 kV Line Uprate</td>
<td>Modify</td>
<td>38</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>Mayo, Mayo</td>
<td>3</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0740</td>
<td>Letterkenny 110 kV Station - Relocation of 110 kV Bay & 2 New Couplers</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓ ✓</td>
<td>Donegal</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0680</td>
<td>Castlebar 110 kV Station - Uprate 110 kV Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Mayo</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0466</td>
<td>North South 400 kV Interconnection Development (TYNDP/ 81)</td>
<td>New Build</td>
<td>106*</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Meath, Cavan, Monaghan, Armagh, Tyrone</td>
<td>2</td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0645</td>
<td>Portlaoise 110 kV Station - 2 New 110 kV Bays</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Laois</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0721</td>
<td>The Grid West Project (RegIP/115)</td>
<td>New Build</td>
<td>103-115*</td>
<td>✓ ✓ ✓</td>
<td>Mayo, Sligo Roscommon</td>
<td>2</td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0799 (NEW)</td>
<td>Louth 220 kV Station Upgrade</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓ ✓</td>
<td>Louth</td>
<td>2</td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0800 (NEW)</td>
<td>North West Project - RIDP Phase 1 - Reinforcement from Srananagh to South Donegal (TYNDP/ 82)</td>
<td>New Build</td>
<td>83</td>
<td>✓ ✓ ✓</td>
<td>Donegal, Leitrim, Sligo</td>
<td>2</td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0819 (NEW)</td>
<td>Bellacorick - Moy 110 kV Line Uprate</td>
<td>Uprate/Modify</td>
<td>27</td>
<td>✓ ✓ ✓</td>
<td>Mayo, Mayo</td>
<td>2</td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0833 (NEW)</td>
<td>Tawnaghmore 110 kV Station - Mayo Renewable Power Connection</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓ ✓</td>
<td>Mayo</td>
<td>3</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0834 (NEW)</td>
<td>Carrick-on-Shannon 110 kV Station - Uprate Four 110 kV Circuit Breakers</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓ ✓</td>
<td>Leitrim</td>
<td>3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0835 (NEW)</td>
<td>Coolnabacky - Portlaoise 110 kV Line Uprate/8.4</td>
<td>Modify</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Laois, Laois</td>
<td>2</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>DRIVERS</td>
<td>NEEDS</td>
<td>Location</td>
<td>Phase</td>
<td>ECD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>----</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0836 (NEW)</td>
<td>Derryiron 110 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>☑</td>
<td>☑</td>
<td>Offaly</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0839 (NEW)</td>
<td>Moy 110 kV Station - Reconfiguration and Busbar Uprate</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>☑</td>
<td>☑</td>
<td>Mayo</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0771 (NEW)</td>
<td>Castlebar 110 kV Station - Busbar Uprate</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>☑</td>
<td>☑</td>
<td>Mayo</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0849 (NEW)</td>
<td>Cashla 110 kV Station - Uprate Two 110 kV Circuit Breakers</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>☑</td>
<td></td>
<td>Galway</td>
<td>3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0861 (NEW)</td>
<td>Sliabh Bawn 110 kV New Station - New Wind Farm Connection</td>
<td>New Build</td>
<td>1.2</td>
<td></td>
<td>☑</td>
<td>Roscommon</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0837 (NEW)</td>
<td>Bellacorrick 110 kV Station - Transformer Uprate</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>☑</td>
<td></td>
<td>Mayo</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0878 (NEW)</td>
<td>Binbane 110 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td></td>
<td>☑</td>
<td>Donegal</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0879 (NEW)</td>
<td>Letterkenny 110 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td></td>
<td>☑</td>
<td>Donegal</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0881 (NEW)</td>
<td>Galway 110 kV Station - Uprate Two 110 kV Circuit Breakers</td>
<td>Uprate/Modify</td>
<td>0</td>
<td></td>
<td></td>
<td>Galway</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0847 (NEW)</td>
<td>Arva - Shankill No.1 110 kV Line Upgrade</td>
<td>Uprate/Modify</td>
<td>18.6</td>
<td>☑</td>
<td></td>
<td>Cavan, Cavan</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0850 (NEW)</td>
<td>Oweninney 110 kV New Station - New Wind Farm Connections</td>
<td>New Build</td>
<td>0</td>
<td></td>
<td>☑</td>
<td>Mayo</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0838 (NEW)</td>
<td>Dalton 110 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td></td>
<td>☑</td>
<td>Mayo</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0870 (NEW)</td>
<td>Carrick-on-Shannon - Arigna T - Corderry 110 kV Line Upgrade</td>
<td>Uprate/Modify</td>
<td>35</td>
<td></td>
<td></td>
<td>Roscommon, Leitrim</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0882 (NEW)</td>
<td>Glenree 110 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td></td>
<td>☑</td>
<td>Mayo</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>Security of Supply</td>
<td>RES</td>
<td>Integration</td>
<td>Market Integration</td>
<td>Inter-Regional Power Flow</td>
<td>Local Constraints</td>
<td>Inter-connection</td>
<td>Asset Condition</td>
<td>County / Counties</td>
<td>Phase</td>
<td>ECD</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
<td>--------------</td>
<td>-----</td>
<td>-------------------</td>
<td>-----</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>CP0865</td>
<td>Cashla - Salthill 110 kV Line Uprate</td>
<td>Uprate/Modify</td>
<td>9.4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>Galway, Galway</td>
<td>2</td>
<td>2016</td>
</tr>
</tbody>
</table>

Table C-2 Planned Projects in the Border, Midlands and West Planning Area (38 Projects)
Projects in the South-West and Mid-West Planning Area

There are 39 projects in the South-West and Mid-West Planning Area; these projects are listed in Table C-3 below.

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>SECURITY OF SUPPLY</th>
<th>INTER-REGIONAL POWER FLOW</th>
<th>MARKET INTEGRATION</th>
<th>LOCAL CONSTRAINTS</th>
<th>INTER-CONNECTION</th>
<th>ASSET CONDITION</th>
<th>COUNTY / COUNTIES</th>
<th>PHASE</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0608</td>
<td>Cloghboola 110 kV New Station & Connection to Trien 110 kV Station - New Wind Farm Connections</td>
<td>New Build</td>
<td>13.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Kerry</td>
<td>3</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>CP0828</td>
<td>Boggeragh 110 kV Station - New 110 kV Bay</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Cork</td>
<td>3</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>CP0709</td>
<td>Dunmanway 110 kV Station - Busbar Uprate & New Coupler</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Cork</td>
<td>3</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>CP0657</td>
<td>Ikerrin T - Thurles 110 kV Line Uprate & Thurles 110 kV Station - Busbar Uprate & New Coupler</td>
<td>Uprate/ Modify</td>
<td>25.9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Tipperary North, Tipperary North</td>
<td>3</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>CP0716</td>
<td>Carrigadrohid - Macroom 110 kV Line Uprate</td>
<td>Uprate/ Modify</td>
<td>2.4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Cork, Cork</td>
<td>3</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>CP0399</td>
<td>Moneypoint - Kilpadoge 400/ 220 kV New Cables [RegIP/ 117]</td>
<td>New Build</td>
<td>10*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Clare, Kerry</td>
<td>3</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>CP0500</td>
<td>Knockanure 220/ 110 kV New Station</td>
<td>New Build</td>
<td>1*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Kerry, Limerick</td>
<td>3</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>CP0501</td>
<td>Clashavoon - Dunmanway 110 kV New Line</td>
<td>New Build</td>
<td>35*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Cork, Cork</td>
<td>3</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>CP0622</td>
<td>Tarbert 220/110 kV Station Refurbishment</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Kerry</td>
<td>3</td>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>CP0763</td>
<td>Kilpadoge - Knockanure and Ballyvouskil - Clashavoon 220 kV Line Uprates and Kilpadoge - Tarbert 220</td>
<td>Uprate/ Modify</td>
<td>97.3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Cork, Kerry</td>
<td>3</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>DRIVERS</td>
<td>NEEDS</td>
<td>Location</td>
<td>County / Counties</td>
<td>Phase</td>
<td>ECD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>----</td>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0647</td>
<td>Kilpadoge 220/ 110 kV New Station</td>
<td>New Build</td>
<td>0</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Kerry</td>
<td>3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0650</td>
<td>Ballyvouskill 220/ 110 kV New Station</td>
<td>New Build</td>
<td>14*</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Cork, Cork</td>
<td>3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0651</td>
<td>Ballynahulla 220/ 110 kV New Station</td>
<td>New Build</td>
<td>10*</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Kerry</td>
<td>3</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0627</td>
<td>Bandon 110 kV Station - Uprate 110 kV Bay</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
<td>Cork</td>
<td>3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0041</td>
<td>Macroom 110 kV Station - New 110 kV Bay for Hartnett's Cross 110 kV New Station</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
<td>Cork</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0743</td>
<td>Cow Cross 110 kV Station - New 110 kV Bay</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>☑️</td>
<td></td>
<td></td>
<td>Cork</td>
<td>2</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0597</td>
<td>Ennis - Booltiagh - Tullibrack T - Moneypoint 110 kV Line Uprate</td>
<td>Uprate/ Modify</td>
<td>50.2</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
<td>Clare, Clare</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0688</td>
<td>Moneypoint 400/ 220/ 110 kV GIS Development</td>
<td>New Build</td>
<td>0</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
<td>Clare</td>
<td>3</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0054</td>
<td>Ardnacrusha 110 kV Station Redevelopment</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>☑️</td>
<td></td>
<td></td>
<td>Clare</td>
<td>3</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0707</td>
<td>Barrymore 110 kV Station Extension & Loop in</td>
<td>New Build</td>
<td>0.3</td>
<td>☑️</td>
<td></td>
<td></td>
<td>Cork</td>
<td>2</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0824</td>
<td>Moneypoint - Oldstreet 400 kV Line Refurbishment</td>
<td>Refurbish / Replace</td>
<td>102.5</td>
<td>☑️</td>
<td></td>
<td></td>
<td>Clare, Galway</td>
<td>2</td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0794</td>
<td>Aghada 220/ 110 kV Station Upgrade</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
<td>Cork</td>
<td>3</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0796</td>
<td>Knockraha 220 kV Station Upgrade</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>☑️</td>
<td></td>
<td></td>
<td>Cork</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0624</td>
<td>Killonan 220/ 110 kV Station Redevelopment</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>☑️</td>
<td></td>
<td></td>
<td>Limerick</td>
<td>2</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>DRIVERS</td>
<td>NEEDS</td>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---------------</td>
<td>----</td>
<td>----------</td>
<td>-------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0726</td>
<td>Moneypoint to Knockanure 220 kV Project (RegIP/117)</td>
<td>New Build</td>
<td>26*</td>
<td>✓</td>
<td>✓</td>
<td>Clare, Kerry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0741</td>
<td>Trabeg 110 kV Station - Uprate 2 110 kV Transformer Bays</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td></td>
<td>Cork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0818</td>
<td>Cordal 110 kV Station</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Kerry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0830</td>
<td>Raffeen - Trabeg 110 kV No. 1 Line</td>
<td>Uprate/Modify</td>
<td>10.4</td>
<td>✓</td>
<td>✓</td>
<td>Cork, Cork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0790</td>
<td>Cloghboola 110 kV Station - New Windfarm and New DSO Transformers</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Kerry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0829</td>
<td>Clashavoon - Macroom No. 2 New 110 kV Circuit and Increased Transformer Capacity in Clashavoon 220/110 kV Station</td>
<td>New Build</td>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>Cork, Cork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0883</td>
<td>Ballynahulla - Ballyvousskill and Ballynahulla - Knockanure 220 kV Line Uprates (formerly part of CP0763)</td>
<td>Uprate/Modify</td>
<td>1.2</td>
<td>✓</td>
<td>✓</td>
<td>Cork, Kerry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0851</td>
<td>Kilbarry 110 kV Station - Uprate Three 110 kV Circuit Breakers</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Cork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0852</td>
<td>Clahane 110 kV Station - Reconfiguration works associated with Wind Farm Extension</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Kerry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0840</td>
<td>Ballynahulla 220 kV station - Second 220/110 kV Transformer</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Kerry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0925</td>
<td>Kilpaddoge 220 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Kerry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Previously numbered CP0754.
<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES</th>
<th>Integration</th>
<th>Market</th>
<th>Integration</th>
<th>Inter-regional Power Flow</th>
<th>Local Constraints</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>County / Counties</th>
<th>Phase</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0892</td>
<td>Aughnish 110 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Limerick</td>
<td>2</td>
<td>2017</td>
</tr>
<tr>
<td>CP0875</td>
<td>Charleville 110 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cork</td>
<td>2</td>
<td>2017</td>
</tr>
<tr>
<td>CP0863</td>
<td>Midleton 110 kV Station - New 110 kV DSO Transformer Bay</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cork</td>
<td>2</td>
<td>2016</td>
</tr>
<tr>
<td>CP0864</td>
<td>Tarbert - Tralee No. 1 110 kV Line Refurbishment</td>
<td>Refurbish / Replace</td>
<td>41.8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kerry, Kerry</td>
<td>2</td>
<td>2016</td>
</tr>
</tbody>
</table>

Table C-3 Planned Projects in the South-West and Mid-West Planning Area (39 Projects)
Projects in the South-East, Mid-East and Dublin Planning Area

There are 38 projects in the South-East, Mid-East and Dublin Planning Area; these projects are listed in Table C-4 below.

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES</th>
<th>Integration</th>
<th>Integration</th>
<th>Inter-Regional Power Flow</th>
<th>Local Constraints</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>County / Counties</th>
<th>Phase</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0508</td>
<td>Shelton Abbey 110 kV Station - Protection Upgrade</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wicklow</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0705</td>
<td>Woodhouse 110 kV New Station - New Wind Farm Connection</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Waterford</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0753</td>
<td>Waterford 110 kV Station - Uprate 110 kV Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>Waterford</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0623</td>
<td>Great Island 220 kV Station Redevelopment</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wexford</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0667</td>
<td>Inchicore - Maynooth No. 1 & No. 2 220 kV Line Uprate</td>
<td>Uprate/Modify</td>
<td>38</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>Dublin, Kildare</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0683</td>
<td>Dunstown 400/220 kV Station - New 400/220 kV 500 MVA Transformer</td>
<td>New Build</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>Kildare</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0747</td>
<td>Maynooth - Ryebrook 110 kV Line Uprate</td>
<td>Uprate/Modify</td>
<td>9</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kildare, Kildare</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0668</td>
<td>Corduff - Ryebrook 110 kV Line Uprate & Ryebrook 110 kV Station Busbar Uprate</td>
<td>Uprate/Modify</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>Dublin, Kildare</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0769</td>
<td>Dunstown - Kellis 220 kV Line Refurbishment</td>
<td>Refurbish / Replace</td>
<td>59.3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kildare, Carlow</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0798</td>
<td>Dunstown - Turloough Hill 220 kV Line Refurbishment</td>
<td>Refurbish / Replace</td>
<td>25.2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kildare, Wicklow</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0770</td>
<td>Poolbeg 220 kV Station - Fencing</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dublin</td>
<td>2</td>
<td>2015</td>
</tr>
<tr>
<td>CP0779</td>
<td>Dungarvan 110 kV Station - Transmission Works Associated with Installation of New 38 kV GIS</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Waterford</td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>DRIVERS</td>
<td>NEEDS</td>
<td>Location</td>
<td>County / Counties</td>
<td>Phase</td>
<td>ECD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------------------</td>
<td>-----</td>
<td>----------</td>
<td>-------</td>
<td>---</td>
<td>-------------------</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0797</td>
<td>Dunfirth - Kinnegad - Rinawade 110 kV Line Refurbishment</td>
<td>Refurbish / Replace</td>
<td>53.9</td>
<td></td>
<td></td>
<td></td>
<td>Kildare, Meath</td>
<td>3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0486</td>
<td>Wexford 110 kV Station - New 110 kV Transformer Bay & New Coupler</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Wexford</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0756</td>
<td>Cauteen - Tipperary 110 kV Line Uprate</td>
<td>Uprate/ Modify</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>Tipperary South, Tipperary South</td>
<td>3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0744</td>
<td>Cahir - Tipperary 110 kV Line Uprate & Tipperary 110 kV Station Busbar Uprate</td>
<td>Uprate/ Modify</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td>Tipperary South, Tipperary South</td>
<td>3</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0755</td>
<td>Cauteen - Killonan 110 kV Line Uprate</td>
<td>Uprate/ Modify</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
<td>Tipperary South, Limerick</td>
<td>3</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0729</td>
<td>Great Island 110 kV Station Redevelopment</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Wexford</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0789</td>
<td>Ryebrook 110 kV Station Redevelopment</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Kildare</td>
<td>3</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0490</td>
<td>Great Island 220/ 110 kV Station - New 110 kV DSO Transformer Bay for DSO Connection to Knockmullen (New Ross)</td>
<td>Uprate/ Modify</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Wexford</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0646</td>
<td>Finglas 110 kV Station Redevelopment</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Dublin</td>
<td>3</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0760</td>
<td>Installation of 100 MVar Reactive Support in Dublin Region</td>
<td>New Build</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Dublin</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0580</td>
<td>Carrickmines 220/ 110 kV Station - New 4th 220/ 110 kV 250 MVA Transformer & GIS Development</td>
<td>New Build</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Dublin</td>
<td>3</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0792</td>
<td>Finglas 220 kV Station Upgrade</td>
<td>Uprate/</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Dublin</td>
<td>2</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP No.</td>
<td>Project Title</td>
<td>Type</td>
<td>km</td>
<td>DRIVERS</td>
<td>NEEDS</td>
<td>Location</td>
<td>Phase</td>
<td>ECD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>-------------------</td>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0585</td>
<td>Laois-Kilkenny Reinforcement Project</td>
<td>New Build</td>
<td>30* + 22</td>
<td>✓</td>
<td>✓</td>
<td>Laois, Kilkenny</td>
<td>2</td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0825</td>
<td>Oldstreet - Woodland 400 kV Line Refurbishment</td>
<td>Refurbish / Replace</td>
<td>126.4</td>
<td>✓</td>
<td>✓</td>
<td>Galway, Tipperary, Offaly, Kildare, Meath</td>
<td>3</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0437</td>
<td>Dublin North Fringe 220/110 kV Project – New 220/110 kV Station to the East of Finglas 220/110 kV Station</td>
<td>New Build</td>
<td>10*</td>
<td>✓</td>
<td>✓</td>
<td>Dublin</td>
<td>3</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0693</td>
<td>Baroda 110 kV Station – 2 New 110 kV Bays</td>
<td>Uprate / Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Kildare</td>
<td>2</td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0692</td>
<td>Inchicore 220 kV Station Upgrade</td>
<td>Uprate / Modify</td>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>Dublin</td>
<td>2</td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP0732</td>
<td>The Grid Link Project (RegIP/83)</td>
<td>New Build</td>
<td>6* + 83</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Kerry, Clare, Galway, Kilkenny, Wexford, Kildare</td>
<td>1</td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

76 30 km accounts for the proposed new 110 kV circuit between the proposed new 400/110 kV station near Portlaoise and the proposed new 110 kV station at Ballyragget, while 22 km accounts for the proposed 110 kV uprate to the existing Ballyragget - Kilkenny line which is currently operated at 38 kV.

77 In October 2015 we selected the regional solution as the preferred option.

78 6 km accounts for the proposed new circuit under the Shannon Estuary, while 83 km accounts for the proposed uprates to existing circuits.
<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES</th>
<th>Integration</th>
<th>Integration</th>
<th>Inter-Regional Power Flow</th>
<th>Local Constraints</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>County / Counties</th>
<th>Phase</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0859 (NEW)</td>
<td>Cloghran – Corduff 110 kV New Cable</td>
<td>New Build</td>
<td>2.5</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dublin, Dublin</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0862 (NEW)</td>
<td>Cloghran 110 kV Station - New Cable Bay and New Transformer Bay</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dublin</td>
<td>2</td>
<td>2015</td>
</tr>
<tr>
<td>CP0860 (NEW)</td>
<td>Finglas 220 kV Station - Transformer Replacement Project</td>
<td>Refurbish/Replace</td>
<td>0</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dublin</td>
<td>2</td>
<td>2015</td>
</tr>
<tr>
<td>CP0894 (NEW)</td>
<td>Great Island 220 kV Station - New DSO 110/38 kV Transformer</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wexford</td>
<td>2</td>
<td>2017</td>
</tr>
<tr>
<td>CP0872 (NEW)</td>
<td>West Dublin New 220/110 kV Station</td>
<td>New Build</td>
<td>0</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dublin</td>
<td>2</td>
<td>2019</td>
</tr>
<tr>
<td>CP0869 (NEW)</td>
<td>Maynooth - Woodland 220 kV Line Refurbishment</td>
<td>Refurbish/Replace</td>
<td>0</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dublin, Dublin</td>
<td>2</td>
<td>2016</td>
</tr>
<tr>
<td>CP0911 (NEW)</td>
<td>Cullenagh – Knockraha 220 kV Line – Polymeric Insulator Replacement</td>
<td>Refurbish/Replace</td>
<td>0</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Waterford, Cork</td>
<td>2</td>
<td>2015</td>
</tr>
<tr>
<td>CP0914 (NEW)</td>
<td>Meath Hill 110 kV Station – Uprate 2 DSO Transformers</td>
<td>Uprate/Modify</td>
<td>0</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meath</td>
<td>2</td>
<td>2016</td>
</tr>
</tbody>
</table>

Table C-4 Planned Projects in the South-East, Mid-East and Dublin Planning Area (38 Projects)
National Programmes

There are ten national programmes each with elements at various locations around the country; they are listed in Table C-5 below.

<table>
<thead>
<tr>
<th>CP No.</th>
<th>Project Title</th>
<th>Type</th>
<th>km</th>
<th>Security of Supply</th>
<th>RES Integration</th>
<th>Market Integration</th>
<th>Inter-Regional Power Flow</th>
<th>Local Constraints</th>
<th>Connection</th>
<th>Inter-connection</th>
<th>Asset Condition</th>
<th>Phase</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP0752</td>
<td>HV Line Tower Painting - South</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0481</td>
<td>Strategic Spare - 220 kV Mobile Bay</td>
<td>Uprate / Modify</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0788</td>
<td>Micafil Bushings Replacement</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0786</td>
<td>Surge Arrestor Replacement - North</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0787</td>
<td>Surge Arrestor Replacement - South</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>2018</td>
</tr>
<tr>
<td>CP0322</td>
<td>Protection Upgrades at Various Stations</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0727</td>
<td>Balteau CT Replacement 110 kV</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0727</td>
<td>Balteau CT Replacement 220 kV</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>2016</td>
</tr>
<tr>
<td>CP0821</td>
<td>HV Line Tower Painting - North (NEW)</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>2015</td>
</tr>
<tr>
<td>CP0851</td>
<td>Paint Towers Nationwide (NEW)</td>
<td>Refurbish / Replace</td>
<td>0</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
<td>2016</td>
</tr>
</tbody>
</table>

Table C-5 Planned National Projects at various locations (10 Projects)
APPENDIX D: IRISH PROJECTS IN EUROPEAN PLANS

How are Irish transmission projects included in ENTSO-E’s TYNDP?

Licensed TSOs, who are members of ENTSO-E, and third party promoters propose transmission projects to ENTSO-E for inclusion in ENTSO-E’s TYNDP. If these projects match the Project of Pan-European Significance criteria, see below, they are included in the TYNDP.

Criteria for inclusion in TYNDP, that is, a Project of Pan-European Significance

A Project of Pan-European Significance is a set of Extra High Voltage assets, matching the following criteria:

- The main equipment is at least 220 kV if it is an AC overhead line or at least 150 kV otherwise and is, at least partially, located in one of the 34 countries represented within ENTSO-E;

- The project increases the grid transfer capability (GTC) across a network boundary within the ENTSO-E interconnected network or at its borders;

- The grid transfer capability increase (expressed in MW) meets at least one of the following minimums:
 - At least 500 MW of additional NTC; or
 - Connecting or securing output of at least 1 GW/1000 km² of generation; or
 - Securing load growth for at least 10 years for an area representing consumption greater than 3 TWh/year.

79 For the avoidance of doubt, the term “Irish Projects in European Plans” refers to Irish projects in ENTSO-E’s TYNDP and RegIP NS and Irish projects designated Projects of Common Interest.

80 For example, additional NTC between two market areas.

81 That is, increasing the import and/or export capability of ENTSO-E countries in relation to others.
EirGrid Projects in TYNDP 2014 and RegIP NS 2014

Tables D.1 and D.2 below list the Irish projects we have proposed, that are in ENTSO-E's most recent TYNDP 2014 and RegIP NS 2014 respectively.

Projects which have a CP No. in the table below have achieved internal capital approval and are also listed in Appendix C above. Projects which are labelled “n/a” are currently conceptual and are under investigation.

<table>
<thead>
<tr>
<th>TYNDP No.</th>
<th>CP No.</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>CP0466</td>
<td>North South 400 kV Interconnection Development</td>
</tr>
<tr>
<td>82</td>
<td>CP0800</td>
<td>Renewable Integration Development Project (RIDP)</td>
</tr>
<tr>
<td>106</td>
<td>n/a</td>
<td>Second Ireland - Great Britain Interconnector Project</td>
</tr>
<tr>
<td>107</td>
<td>n/a</td>
<td>Ireland - France Interconnector (Celtic Interconnector)</td>
</tr>
</tbody>
</table>

Table D-1 Our Projects in European TYNDP 2014

<table>
<thead>
<tr>
<th>RegIP No.</th>
<th>CP No.</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>CP0732</td>
<td>The Grid Link Project</td>
</tr>
<tr>
<td>84</td>
<td>n/a</td>
<td>Project to Reinforce the Greater Dublin Area (Dunstown - Woodland corridor)</td>
</tr>
<tr>
<td>115</td>
<td>CP0721</td>
<td>The Grid West Project</td>
</tr>
<tr>
<td>117</td>
<td>CP0399</td>
<td>Shannon Crossings:</td>
</tr>
<tr>
<td></td>
<td>CP0726</td>
<td>Moneypoint - Kilpaddoge 220 kV New Cable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moneypoint - Knockanure 220 kV Project</td>
</tr>
<tr>
<td>777</td>
<td>n/a</td>
<td>Project to Reinforce the Greater Dublin Area (Carrickmines - Dunstown corridor)</td>
</tr>
<tr>
<td>778</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D-2 Our Projects in European RegIP NS 2014

82 CP0800 is the North West Project only i.e. the first phase of RIDP.
83 This project was included in TYNDP 2014 as a future potential project however it is not currently progressing and will be removed from future European Plans.
84 Formerly part of RegIP/84.
Third Party Projects in TYNDP 2014

Table D.3 below lists the Irish projects proposed by third parties that are included in ENTSO-E’s most recent TYNDP, TYNDP 2014.

<table>
<thead>
<tr>
<th>TYNDP No.</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>Greenwire IE-GB</td>
</tr>
<tr>
<td>189</td>
<td>Irish - Scottish Isles</td>
</tr>
<tr>
<td>228</td>
<td>Marex</td>
</tr>
<tr>
<td>230</td>
<td>North Seas Offshore Grid Infrastructure Scheme</td>
</tr>
</tbody>
</table>

East coast offshore windfarm connections (TYNDP/ 109) were included in TYNDP 2012 and referred to as future potential projects in TDP 2013. The Irish projects were removed from TYNDP/ 109 and renumbered RegIP/ 814 and RegIP/ 815 because of new geographical requirements for projects in the TYNDP. These projects are driven by windfarm developers.

Irish Projects of Common Interest (PCIs)

The EC oversees the designation of Projects of Common Interest (PCI). To be eligible for PCI status, inclusion in the last available TYNDP is an explicit condition. Table D.3 below lists the Irish Projects of Common Interest.

<table>
<thead>
<tr>
<th>PCI No.</th>
<th>TYNDP No.</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13.1</td>
<td>81</td>
<td>North South 400 kV Interconnection Development</td>
</tr>
<tr>
<td>2.13.2</td>
<td>82</td>
<td>Renewable Integration Development Project (RIDP)</td>
</tr>
<tr>
<td>1.6</td>
<td>107</td>
<td>Ireland - France Interconnector (Celtic Interconnector)</td>
</tr>
<tr>
<td>1.9.1</td>
<td>185</td>
<td>Greenwire IE-GB</td>
</tr>
<tr>
<td>1.9.2</td>
<td>189</td>
<td>Irish - Scottish Isles</td>
</tr>
<tr>
<td>1.11.4</td>
<td>228</td>
<td>Marex</td>
</tr>
</tbody>
</table>

Table D-3 Irish Projects of Common Interest
How are Irish and European Plans related?

It is worth highlighting how the Irish TDP and the European plans and designations are related. Figure D.1 below illustrates the relationship. All our capital projects, irrespective of size, are described in the TDP.

Only high voltage projects that involve a large increase in transmission capacity are included in European plans. Of those only a small number of large cross border projects which increase the import and/or export capability of ENTSO-E countries are designated Projects of Common Interest.

Figure D-1 Relationship between Irish and European Plans
APPENDIX E: REFERENCES

Our published documents

I. TDP 2012, July 2013
II. TDP 2013, July 2015
III. TPC, October 1998
V. Grid Development Strategy Review - Your Grid, Your Views, March 2015
VI. All Island GCS 2015-2024, February 2015
VII. All Island TYTFS 2014-2023, February 2015
VIII. Grid25 IP, May 2012
IX. Strategic Environmental Assessment, May 2012

ENTSO-E published documents

X. TYNDP 2014, October 2014

National Legislation

XI. Electricity Regulation Act, 1999
XII. Planning and Development Acts, 2000 to 2011
XIII. Strategic Infrastructure Act, 2006
XIV. Statutory Instrument No. 445 of 2000, European Communities (Internal Market in Electricity) Regulations
XV. Statutory Instrument No. 60 of 2005, European Communities (Internal Market in Electricity) Regulations
XVI. Statutory Instrument No. 147 of 2011, European Communities (Renewable Energy) Regulations
European Legislation

XVII. Birds and Natural Habitats Regulations, 2011

XVIII. Cross-border Exchanges in Electricity Regulation (EC) No 714/ 2009

XIX. Environmental Impact Assessment Directive

XX. Habitats Directive

XXI. Internal Market in Electricity Directive 2009/ 72/ EC

XXII. Promotion of the Use of Energy from Renewable Resources Directive 2009/ 28/ EC

C.E.R. published documents

XXIV. TSO Licence granted to EirGrid, amended March 2009

XXV. CER/ 10/ 206; Decision on TSO and TAO Transmission Revenue for 2011 to 2015, November 2010

Government published documents

XXVI. National Spatial Strategy for Ireland 2002-2020, November 2002

XXVII. Energy White Paper, 2007

XXVIII. Government Policy Statement on the Strategic Importance of Transmission and Other Energy Infrastructure, July 2012